Automatic singing quality recognition employing artificial neural networks - Publication - Bridge of Knowledge

Search

Automatic singing quality recognition employing artificial neural networks

Abstract

Celem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system są zbieżne z ocenami grupy ekspertów. The aim of the paper is to determine how quality of singing voice can be recognized automatically. For this purpose, a database of singing voice sounds with samples of voices of trained and untrained singers was created and is presented. The methods of singing voice parameterization are shortly reviewed and a set of descriptors is outlined. Each of the presented samples is parameterized and judged by experts, and the resulting feature vectors and quality scores are then used to train an artificial neural network. A comparison between experts' and automatic recognition results is performed. Finally, statistical methods are applied to prove that an artificial neural network is able to automatically determine the quality of a singing voice with the accuracy very similar to expert assessments. The paper includes the discussion of results and presents derived conclusions.

Cite as

Full text

download paper
downloaded 42 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie z listy filadelfijskiej
Published in:
Archives of Acoustics no. 33, pages 65 - 71,
ISSN: 0137-5075
Language:
English
Publication year:
2008
Bibliographic description:
Żwan P.: Automatic singing quality recognition employing artificial neural networks// Archives of Acoustics. -Vol. 33., iss. 1 (2008), s.65-71
Verified by:
Gdańsk University of Technology

seen 108 times

Recommended for you

Meta Tags