Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices - Publication - Bridge of Knowledge

Search

Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices

Abstract

There is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity. In this work, authors describe a detailed study on electrochemical performance and the enhancement of electrochemical active surface area in the BDD electrodes that have been pretreated via chemical-assisted mechanical lapping. The effect of lapping on both surface chemistry and oxidation processes at the BDD surface was assessed by means of chronovoltammetry, instantaneous impedance monitoring, and X-Ray photoelectron spectroscopy. Next, atomic force microscopy and scanning electron microscopy were employed to produce data on spreading resistance and surface geometry, respectively. While the analyzed interactions are very complex and multi-level, authors suggested that the main observed effect was due to the removal of non-diamond carbon impurities from the electrode surface, decreased grain size, and heterogeneous conductivity. Short-duration pretreatments were found to be an effective route towards more efficient surface activation with negligible alterations in the diamond film structure. A prolonged pretreatment led to a decrease in grain size and lowered contribution of (111) and (110) facets, which in turn influenced the electrode kinetics.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 123 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHIMICA ACTA no. 242, pages 268 - 279,
ISSN: 0013-4686
Language:
English
Publication year:
2017
Bibliographic description:
Ryl J., Zieliński A., Burczyk Ł., Bogdanowicz R., Ossowski T., Darowicki K.: Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices// ELECTROCHIMICA ACTA. -Vol. 242, (2017), s.268-279
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2017.05.027
Bibliography: test
  1. L.A. Hutton, J.G. Iacobini, E. Bitziou, R.B. Channon, M.E. Newton, J.V. Macpherson, Examination of the Factors Affecting the Electrochemical Performance of Oxygen-terminated Polycrystalline Boron-doped Diamond Electrodes, Anal. Chem. 85 (2013) 7230-7240, doi:http://dx.doi.org/10.1021/ ac401042t. open in new tab
  2. H.V. Patten, K.E. Meadows, L.A. Hutton, J.G. Iacobini, D. Battistel, A.W. McKelvey, M.E. Newton, J.V. Macpherson, P.R. Unwin, Electrochemical Mapping Reveals Direct Correlation Between Heterogeneous Electron- transfer Kinetics and Local Density of States in Diamond Electrodes, Angew. Chemie. Intl. Ed. 51 (2012) 7002-7006, doi:http://dx.doi.org/10.1002/ anie.201203057. open in new tab
  3. I. Duo, A. Fujishima, C. Comninellis, Electron Transfer Kinetics on Composite Diamond (sp3)-graphite (sp2) Electrodes, Electrochem. Commun. 5 (2003) 695-700, doi:http://dx.doi.org/10.1016/S1388-2481(03)00169-3. open in new tab
  4. G.M. Swain, The Susceptibility to Surface Corrosion in Acidic Fluoride Media: a Comparison of Diamond, HOPG and Glassy Carbon Electrodes, J. Electrochem. Soc. 141 (1994) 3382-3383, doi:http://dx.doi.org/10.1149/ 1.2059343. open in new tab
  5. A. Zieli nski, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki, Local Impedance Imaging of Boron-doped Polycrystalline Diamond Thin Films, Appl. Phys. Lett. 105 (2014) 131908, doi:http://dx.doi.org/10.1063/1.4897346. open in new tab
  6. S.C.B. Oliveira, A.M. Oliveira-Brett, Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre- treated boron doped diamond electrode, Electrochim Acta 55 (2010) 4599- 4605, doi:http://dx.doi.org/10.1016/j.electacta.2010.03.016. open in new tab
  7. I. Duo, C. Levy-Clement, A. Fujishima, C. Comninellis, Electron Transfer Kinetics on Boron-doped diamond Part I: Influence of anodic treatment, J. Appl. Eletrochem. 34 (2004) 935-943, doi:http://dx.doi.org/10.1023/B: JACH.0000040525.76264.16. open in new tab
  8. R. Ramesham, M.F. Rose, Polishing of Polycrystalline Diamond by Hot Nickel Surface, Thin Solid Films 320 (1998) 223-227, doi:http://dx.doi.org/10.1016/ S0040-6090(97)00944-9. open in new tab
  9. M.C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M.D. Koppang, J.E. Butler, G. Lucazeau, M. Mermoux, J.W. Strojek, G.M. Swain, Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem. 72 (2000) 3793-3804, doi: http://dx.doi.org/10.1021/ac0000675. open in new tab
  10. Y. Jiang, D. Liu, Z. Jiang, B. Mao, X. Ma, Q. Li, Investigation on Electrochemically Cathodic Polarization of Boron-Doped Diamond Electrodes and Its Influence on Lead Ions Analysis, J. Electrochem. Soc. 161 (2014) H410-H415, doi:http:// dx.doi.org/10.1149/2.106406jes. open in new tab
  11. L.C.D. Santos, A.B. Couto, J.T. Matushima, M.R. Baldan, N.G. Ferreira, Anodic and Cathodic pre-Treatment effects on BDD surface to deposit copper nanoparticles applied to nitrate reduction, Mater. Res. S. C. 1395 (2012) 63- 68, doi:http://dx.doi.org/10.1557/opl.2012.79. open in new tab
  12. A.M. Ozkan, A.P. Malshe, W.D. Brown, Sequential Multiple-laser-assisted Polishing of Free-standing CVD Diamond Substrates, Diam. Relat. Mater. 6 (1997) 1789-1798, doi:http://dx.doi.org/10.1016/S0925-9635(97)00141-6. open in new tab
  13. A. Hirata, H. Tokura, M. Yoshikawa, Smoothing of Chemically Vapour Deposited Diamond Films by Ion Beam Irradiation, Thin Solid Films 212 (1992) 43-48, doi:http://dx.doi.org/10.1016/0040-6090(92)90498-Z. open in new tab
  14. A.M. Zaitsev, G. Kosaca, B. Richarz, V. Raiko, R. Job, T. Fries, W.R. Fahrner, Thermochemical Polishing of CVD Diamond Films, Diam. Relat. Mater. 7 (1998) 1108-1117, doi:http://dx.doi.org/10.1016/S0925-9635(98)00158-7. open in new tab
  15. M. Panizza, G. Sine, I. Duo, L. Ouattara, C. Comninellis, Electrochemical Polishing of Boron-doped Diamond in Organic Media, Electrochem. Solid- State Lett. 6 (2003) D17-D19, doi:http://dx.doi.org/10.1149/1.161964. open in new tab
  16. G.R. Salazar-Banda, A.E. de Carvalho, L.S. Andrare, R.C. Rocha-Filho, L.A. Avaca, On the Activation and Physical Degradation of Boron-Doped Diamond surfaces brought on by cathodic treatment, J. Appl. Electrochem. 40 (2010) 1817-1827, doi:http://dx.doi.org/10.1007/s10800-010-0139-1. open in new tab
  17. A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, A Review of Techniques for Polishing and Planarizing Chemically Vapor-deposited (CVD) Diamond Films and Substrates, Diam. Relat. Mater. 8 (1999) 1198-1213, doi:http://dx.doi.org/ 10.1016/S0925-9635(99)00088-6. open in new tab
  18. O.A. Williams, R.B. Jackman, Surface Conductivity on Hydrogen Terminated Diamond, Semicond. Sci. Technol. 18 (2003) S34-S40, doi:http://dx.doi.org/ 10.1088/0268-1242/18/3/305. open in new tab
  19. T. Watanabe, Y. Honda, K. Kanda, Y. Einaga, Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron- doping level and sp2-bonded carbon impurities, Phys. Status Solidi A 12 (2014) 2709-2717, doi:http://dx.doi.org/10.1002/pssa.201431455. open in new tab
  20. N. Simon, H. Girard, D. Ballutaud, S. Ghodbane, A. Deneuville, M. Herlem, A. Etchberry, Effect of H and O Termination on the Charge Transfer of Moderately Boron Doped Diamond Electrodes, Diam. Relat. Mater. 14 (2005) 1179-1182, doi:http://dx.doi.org/10.1016/j.diamond.2004.12.013. open in new tab
  21. S. Szunerits, R. Boukherroub, Different Strategies for Functionalization of Diamond Surface, J. Solid State Electrochem. 12 (2008) 1205-1218, doi:http:// dx.doi.org/10.1007/s10008-007-0473-3. open in new tab
  22. R. Bogdanowicz, M. Sawczak, P. Niedzialkowski, P. Zieba, B. Finke, J. Ryl, T. Ossowski, Direct Amination of Boron-doped Diamond by Plasma Polymerized Allylamine Film, Phys. Status Solidi. A 211 (2014) 2319-2327, doi:http://dx.doi.org/10.1002/pssa.201431242. open in new tab
  23. C. Deslouis, J/De Sanoit, S. Saada, C. Mer, A. Pailleret, H. Cachet, P. Bergonzo, Electrochemical Behaviour of (111) B-doped Polycrystalline Diamond: Morphology/Surface conductivity/Activity Assessed by EIS and CS-AFM, Diam. Relat. Mater. 20 (2011) 1-10, doi:http://dx.doi.org/10.1016/j. diamond.2010.10.005. open in new tab
  24. M. Tsigkourakos, T. Hantschel, D.K. Simon, T. Nuytten, A.S. Verhulst, B. Douhard, W. Vandervorst, On the Local Conductivity of Individual Diamond Seeds and Their Impact on the Interfacial Resistance of Boron-doped Diamond Films, Carbon 79 (2014) 103-112, doi:http://dx.doi.org/10.1016/j. carbon.2014.07.048. open in new tab
  25. K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning Electrochemical Microscopy and conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels, J. Phys. Chem. B 108 (2004) 15117-15127, doi:http://dx.doi. org/10.1021/jp048222x. open in new tab
  26. D. Becker, K. Juttner, Influence of Surface Inhomogeneities of Boron Doped CVD-diamond electrodes on reversible charge transfer reactions, J. Appl. Electrochem. 33 (2003) 959-967, doi:http://dx.doi.org/10.1023/ A:1025872013482. open in new tab
  27. D. Becker, K. Juttner, The Impedance of Fast Charge Transfer reaction on Boron Doped Diamond Electrodes, Electrochim. Acta 49 (2003) 29-39, doi:http:// dx.doi.org/10.1016/j.electacta.2003.04.003. open in new tab
  28. T. Gueshi, K. Tokuda, H. Matsuda, Voltammetry at Partially Covered Electrodes: Part I. Chronopotentiometry and Chronoamperometry at Model Electrodes, J. Electroanal. Chem. 89 (1978) 247-260, doi:http://dx.doi. org/10.1016/S0022-0728(78)80188-0. open in new tab
  29. T. Gueshi, K. Tokuda, H. Matsuda, Voltammetry at Partially Covered Electrodes: Part II. Linear potential sweep and cyclic voltammetry, J Electroanal, Chem. 101 (1979) 29-38, doi:http://dx.doi.org/10.1016/S0022- 0728(79)80076-5. open in new tab
  30. S. Szunerits, M. Mermoux, A. Crisci, B. Marcus, P. Bouvier, D. Delabouglise, J.P. Petit, S. Janel, R. Boukherroub, L. Tay, Raman Imaging and Kelvin Probe Microscopy for the Examination of the Heterogeneity of Doping in Polycrystalline Boron-Doped Diamond Electrodes, J. Phys. Chem. B 110 (2006) 23888-23897, doi:http://dx.doi.org/10.1021/jp064429. open in new tab
  31. L.R. Radovic, Chemistry and Physics of Carbon, vol 29, CRC Press, New York, 2004. open in new tab
  32. J. Perriere, E. Millon, E. Fogarassy, Recent Advances in Laser Processing of Materials, 1 st ed., Elsevier Science, New York, 2006. open in new tab
  33. R. Bogdanowicz, M. Sobaszek, J. Ryl, M. Gnyba, M. Ficek, L. Golunski, W.J. Bock, M. Smietana, K. Darowicki, Improved Surface Coverage of an Optical Fibre with Nanocrystalline Diamond by the Application of Dip-coating Seeding, Diam. Relat. Mater. 55 (2015) 52-63, doi:http://dx.doi.org/10.1016/j. diamond.2015.03.007. open in new tab
  34. E.L.H. Thomas, G.W. Nelson, S. Mandal, J.S. Foord, O.A. Williams, Chemical Mechanical Polishing of Thin Film Diamond, Carbon 68 (2014) 473-479, doi: http://dx.doi.org/10.1016/j.carbon.2013.11.023. open in new tab
  35. P.B. Zantye, A. Kumar, A.K. Sikder, Chemical Mechanical Planarization for Microelectronics Application, Mater. Sci. Eng. R-Rep. 45 (2004) 89-220, doi: http://dx.doi.org/10.1016/j.mser.2004.06.002. open in new tab
  36. J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, K. Darowicki, Study on Surface Termination of Boron-doped Diamond Electrodes under Anodic Polarization in H2SO4 by Means of Dynamic Impedance Technique, Carbon 96 (2016) 1093-1105, doi:http://dx.doi.org/10.1016/j. carbon.2015.10.064. open in new tab
  37. M. Velicky, K.Y. Tam, R.A.W. Dryfe, On the Stability of the Silver/silver Sulfate Reference Electrode, Anal. Methods 4 (2012) 1207-1211, doi:http://dx.doi. org/10.1039/C2AY00011C. open in new tab
  38. G.P. Morris, A.N. Simonov, E.A. Mashkina, R. Bordas, K. Gillow, R.E. Baker, D.J. Gavaghan, A.M. Bond, A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathological Variable [Fe(CN)6]3-/4-Process by AC Voltammetry, Anal. Chem. 85 (2013) 11780-11787, doi:http://dx.doi.org/ 10.1021/ac4022105. open in new tab
  39. A.N. Patel, M. Guille Collignon, M.A. O'Connell, W.O.Y. Hung, K. McKelvey, J.V. Macpherson, P.R. Unwin, A new View of Electrochemistry at Highly Oriented Pyrolytic Graphite, J. Am. Chem. Soc. 134 (2012) 20117-20130, doi:http://dx. doi.org/10.1021/ja308615h. open in new tab
  40. P. Chen, R.L. McCreery, Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification, Anal. Chem. 68 (1996) 3958- 3965, doi:http://dx.doi.org/10.1021/ac960492r. open in new tab
  41. D. Necas, P. Klapetek, Gwyddion: an Open-source Software for SPM Data Analysis, Cent. Eur. J. Phys. 10 (2012) 181-188, doi:http://dx.doi.org/10.2478/ s11534-011-0096-2. open in new tab
  42. T. Trenkler, T. Hantschel, R. Stephenson, P. De Wolf, W. Vandervorst, Evaluating Probes for Electrical Atomic Force Microscopy, J. Vac. Sci. Technol. B. 18 (2000) 418-427, doi:http://dx.doi.org/10.1116/1.591205. open in new tab
  43. A. Zieli nski, K. Darowicki, Implementation and Validation of Multisinusoidal, Fast Impedance Measurements in Atomic Force Microscope Contact Mode, Microsc. Microanal. 20 (2014) 974-981, doi:http://dx.doi.org/10.1017/ S1431927614000531. open in new tab
  44. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-doped Diamond Electrodes, J. Electrochem. Soc. 161 (2014) H359-H364, doi:http://dx.doi.org/10.1149/ 2.016406jes(/DOI. open in new tab
  45. vitation Erosion under the Influence of Corrosive Factors, J. Electrochem. Soc. 155 (2008) P 44-P 49, doi:http://dx.doi.org/10.1149/1.2840619(/DOI. open in new tab
  46. K. Darowicki, P. Slepski, Dynamic Electrochemical Impedance Spectroscopy of the First Order Electrode Reaction, J. Electroanal. Chem. 547 (2003) 1-8, doi:http://dx.doi.org/10.1016/S0022-0728(03)00154-2. open in new tab
  47. A. Zielinski, Application of Different Modes of Nanoscale Impedance Microscopy in Materials Research, Surf. Innov. 3 (2015) 181-189, doi: http://dx.doi.org/10.1680/jsuin.15.00006. open in new tab
  48. Z. Xu, T. Hantschel, M. Tsigkourakos, W. Vandervorst, Scanning Spreading Resistance Microscopy for Electrical Characterization of Diamond Interfacial Layers, Phys. Status Solidi A 212 (2015) 2578-2582, doi:http://dx.doi.org/ 10.1002/pssa.201532234. open in new tab
  49. R. O'Hayre, M. Lee, F.B. Prinz, Ionic and electronic Impedance Imaging Using Atomic Force Microscopy, J. Appl. Phys. 95 (2004) 8382-8392, doi:http://dx. doi.org/10.1063/1.1737047. open in new tab
  50. A. Arutunow, K. Darowicki, A. Zielinski, Atomic Force Microscopy Based Approach to Local Impedance Measurements of Grain Interiors and Grain Boundaries of Sensitized AISI 304 Stainless Steel, Electrochim. Acta 56 (2011) 2372-2377, doi:http://dx.doi.org/10.1016/j.electacta.2010.11.079. open in new tab
  51. S.M. Gheno, R.H.G.A. Kiminami, M.M. Morelli, J.V. Bellini, P.I. Paulin Filhoz, An AFM/EFM Study of the Grain Boundary in ZnO-based Varistir Materials, J. Am. Ceram. Soc. 91 (2008) 3593-3598, doi:http://dx.doi.org/10.1111/j. 1551- 2916.2008.02704.x. open in new tab
  52. S. Wang, G.M. Swain, Spatially Heterogeneous Electrical and Electrochemical Properties of Hydrogen-Terminated Boron-Doped Nanocrystalline Diamond Thin Film Deposited from an Argon-Rich CH4/H2/Ar/B2H6 Source Gas Mixture, J. Phys. Chem. C 111 (2007) 3986-3995, doi:http://dx.doi.org/ 10.1021/jp0669557. open in new tab
  53. S. Wang, V.M. Swope, J.E. Butler, T. Feygelson, G.M. Swain, The Structural and Electrochemical Properties of Boron-doped Nanocrystalline Diamond Thin- film Electrodes Grown from Ar-rich and H2-rich Source Gases, Diam. Relat. Mater. 18 (2009) 669-677, doi:http://dx.doi.org/10.1016/j. diamond.2008.11.033. open in new tab
  54. B.L. Willems, G. Zhang, J. Vanacken, V.V. Moshchalkov, S.D. Janssens, K. Haenen, P. Wagner, Granular Superconductivity in Metallic and Insulating Nanocrystalline Boron-Doped Diamond Thin Films, J Phys. D 43 (2010) 37409, doi:http://dx.doi.org/10.1088/0022-3727/43/37/374019. open in new tab
  55. Z. Vlckova Zivcova, O. Frank, V. Petrak, H. Tarabkova, J. Vacık, M. Nesladek, L. Kavan, Electrochemistry and in Situ Raman Spectroelectrochemistry of Low and High Quality Boron Doped Diamond Layers in Aqueous Electrolyte Solution, Electrochim. Acta 87 (2013) 518-525, doi:http://dx.doi.org/10.1016/ j.electacta.2012.09.031. open in new tab
  56. Y.G. Lu, S. Turner, J. Verbeeck, S.D. Janssens, P. Wagner, K. Haenen, G. Van Tendeloo, Direct Visualization of Boron Dopant Distribution and Coordination in Individual Chemical Vapor Deposition Nanocrystalline B- doped Diamond Grains, Appl. Phys. Lett. 101 (2012) 041907, doi:http://dx.doi. org/10.1063/1.4738885. open in new tab
  57. P. Ashcheulov, J. Sereba, A. Kovalenko, V. Petrak, F. Fendrych, M. Nesladek, A. Taylor, Z. Vlckova Zivcova, O. Frank, L. Kavan, M. Dracinsky, P. Hubik, J. Vacik, I. Kraus, I. Kratochvilova, Conductivity of Boron-Doped Polycrystalline Diamond Films: Influence of Specific Boron Defects, Eur. Phys. J. B 86 (2013) 443, doi:http://dx.doi.org/10.1140/epjb/e2013-40528-x. open in new tab
  58. K.E. Bennet, K.H. Lee, J.N. Kruchowski, S.Y. Chang, M.P. Marsh, A.A. Van Orsow, A. Paez, F.S. Manciu, Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study, Materials 6 (2013) 5726-5741, doi:http://dx.doi.org/10.3390/ma6125726. open in new tab
  59. G. Zhang, S. Turner, E.A. Ekimov, J. Vanacken, M. Timmermans, T. Samuely, V. A. Sidorov, S.M. Stishov, Y. Lu, B. Deloof, B. Goderis, G.V. Tendeloo, J. Van de Vondel, V.V. Moshchalkov, Global and Local Superconductivity in Boron- Doped Granular Diamond, Adv. Mater. 26 (2014) 2034-2040, doi:http://dx. doi.org/10.1002/adma.201304667. open in new tab
  60. J. Chevallier, B. Theys, A. Lusson, C. Grattepain, A. Deneuville, E. Gheeraert, Hydrogen-boron Interactions in p-type Diamond, Phys. Rev. B. 58 (1998) 7966-7969, doi:http://dx.doi.org/10.1103/PhysRevB.58.7966. open in new tab
  61. J. Chevallier, A. Lusson, D. Ballutaud, B. Theys, F. Jomard, A. Deneuville, M. Bernard, E. Gheeraert, E. Bustarret, Hydrogen-acceptor Interactions in Diamond, Diam. Relat. Mater. 10 (2001) 399-404, doi:http://dx.doi.org/ 10.1016/S0925-9635(00)00432-5. open in new tab
  62. K.M. Rutledge, K.K. Gleason, Hydrogen in CVD Diamond Films, Chem. Vap. Depos. 2 (1996) 37-43, doi:http://dx.doi.org/10.1002/cvde.19960020203. open in new tab
  63. Y. Show, M.A. Witek, P. Sonthalia, G.M. Swain, Characterization and Electrochemical Responsiveness of Boron-doped Nanocrystalline Diamond Thin-film Electrodes, Chem. Mater. 15 (2003) 879-888, doi:http://dx.doi.org/ 10.1021/cm020927t. open in new tab
  64. N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of Grain-dependent Boron Uptake on the Electrochemical and Electrical Properties of Polycrystalline Boron Doped Diamond Electrodes, J. Phys. Chem. B 110 (2006) 5639-5646, doi:http://dx.doi.org/10.1021/jp0547616. open in new tab
  65. G.M. Swain, R. Ramesham, The Electrochemical Activity of Boron-Doped Polycrystalline Diamond Thin Film Electrodes, Anal. Chem. 65 (1993) 345- 351, doi:http://dx.doi.org/10.1021/ac00052a007. open in new tab
  66. K. Cinkova, C. Batchelor-McAuley, M. Marton, M. Vojs, L. Svorc, R.G. Compton, The Activity of Non-Metallic Boron-Doped Diamond Electrodes with Sub- micron Scale Heterogeneity and the Role of the Morphology of sp2 Impurities, Carbon 110 (2016) 148-154, doi:http://dx.doi.org/10.1016/j. carbon.2016.09.015. open in new tab
  67. N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: A review, Carbon 99 (2016) 90-110, doi:http://dx.doi.org/10.1016/j. carbon.2015.11.061. open in new tab
  68. P. Delahay, Theory of Irreversible Waves in Oscillographic Polarography, J. Am. Chem. Soc. 75 (1953) 1190-1196, doi:http://dx.doi.org/10.1021/ ja01101a054. open in new tab
  69. S.J. Konopka, B. McDuffie, Diffusion Coefficients of Ferri-and Ferrocyanide Ions in Aqueous Media, Using Twin-electrode Thin-layer Electrochemistry, Anal. Chem. 42 (1970) 1741-1746, doi:http://dx.doi.org/10.1021/ ac50160a042. open in new tab
  70. T.J. Davies, C.E. Banks, R.G. Compton, Voltammetry at Spatially Heterogeneous Electrodes, J. Solid State Electrochem. 9 (2005) 797-808, doi:http://dx.doi.org/10.1007/s10008-005-0699-x. open in new tab
  71. P. Rama Kant, Theory of Staircase Voltammetry and Linear Scan Voltammetry on Fractal Electrodes: Emergence of Anomalous Randles-Sevcik Behavior, Electrochim. Acta 111 (2013) 223-233, doi:http://dx.doi.org/10.1016/j. electacta.2013.07.163. open in new tab
  72. L. Nyikos, T. Pajkossy, Diffusion to Fractal Surfaces, Electrochim. Acta 31 (1986) 1347-1350, doi:http://dx.doi.org/10.1016/0013-4686(86)80160-8. open in new tab
  73. K. Jüttner, D. Becker, Characterization of Boron-Doped Diamond Electrodes by Electrochemical Impedance Spectroscopy, J. Appl. Electrochem. 37 (2006) 27-32, doi:http://dx.doi.org/10.1007/s10800-006-9228-6. open in new tab
  74. M.H.P. Santana, L.A. De Faria, J.F.C. Boodts, Electrochemical Characterization and Oxygen Evolution at a Heavily Boron Doped Diamond Electrode, Electrochim. Acta 50 (2005) 2017-2027, doi:http://dx.doi.org/10.1016/j. electacta.2004.08.050. open in new tab
  75. J.V. Macpherson, The Use of Conducting Diamond in Electrochemistry, in: R.C. Alkire, P.N. Bartlett Lipkowski (Eds.), Electrochemistry of Carbon Electrodes, J. Wiley, New York, 2016, pp. 163-210, doi:http://dx.doi.org/10.1002/ 9783527697489.ch5. open in new tab
  76. T. Spataru, L. Preda, C. Munteanu, A.I. Caciuleanu, N. Spataru, A. Fujishima, Influence of Boron-Doped Diamond Surface Termination on the Characteristics of Titanium Dioxide Anodically Deposited in the Presence of a Surfactant, J. Electrochem. Soc. 162 (2015) H535-H540, doi:http://dx.doi.org/ 10.1149/2.0741508jes. open in new tab
  77. C. Liao, Y. Wang, S. Yang, Depth Profiles of Boron and Hydrogen in Boron- doped diamond films and related performance characteristics, Diam. Relat. Mater. 8 (1999) 1229-1233, doi:http://dx.doi.org/10.1016/S0925-9635(99) 00127-2. open in new tab
  78. M. Tsigkourakos, T. Hantschel, Z. Xu, B. Douhard, J. Meersschaut, Y. Zou, K. Larsson, M. Boman, W. Vandervorst, Suppression of Boron Incorporation at the Early Growth Phases of Boron-doped Diamond Thin Films, Phys. Status Solidi A. 212 (2015) 2595-2599, doi:http://dx.doi.org/10.1002/ pssa.201532185. open in new tab
  79. S. Wang, Structure-Function Relationship of Boron-doped Diamond Thin- film Electrodes and Application for in Vitro Amperometric Measurements, Doctoral Dissertation, (2008) .
  80. R. Bogdanowicz, J. Czupryniak, M. Gnyba, J. Ryl, T. Ossowski, M. Sobaszek, E. M. Siedlecka, K. Darowicki, Amperometric Sensing of Chemical Oxygen Demand at Glassy Carbon and Silicon Eectrodes Modified with Boron-doped Diamond, Sensor. Actuat. B-Chem. 189 (2013) 30-36, doi:http://dx.doi.org/ 10.1016/j.snb.2012.12.007. open in new tab
  81. J.V. Macpherson, A Practical Guide to Using Boron Doped Diamond in Electrochemical Research, Phys. Chem. Chem. Phys. 17 (2015) 2935-2949, doi:http://dx.doi.org/10.1039/C4CP04022H. open in new tab
  82. Z.L. Wang, C. Lu, J.J. Li, C.Z. Gu, Effect of Gas Composition on the Growth and Electrical Properties of Boron-doped Diamond Films, Diam. Relat. Mater. 18 (2009) 132-135, doi:http://dx.doi.org/10.1016/j.diamond.2008.10.040. open in new tab
  83. L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Anisotropic Mechanical Amorphization Drives Wear in Diamond, Nature Mater. 10 (2011) 34-38, doi: http://dx.doi.org/10.1038/NMAT2902. open in new tab
  84. T. Schuelke, T.A. Grotjohn, Diamond Polishing, Diam. Relat. Mater. 32 (2013) 17-26, doi:http://dx.doi.org/10.1016/j.diamond.2012.11.007. open in new tab
  85. E.M. Wilks, J. Wilks, The Resistance of Diamond to Abrasion, J. Phys. D: Appl. Phys. 5 (1972) 1902-1919, doi:http://dx.doi.org/10.1088/0022-3727/5/10/ 323(/DOI. open in new tab
  86. Y.V. Pleskov, Y.U. Evstefeeva, V.P. Varnin, I.G. Teremetskaya, Synthetic Semiconductor Diamond Electrodes: Electrochemical Characteristics of Homoepitaxial Boron-doped Films Grown at the (111), (110), and (100) Faces of Diamond Crystals, Russ. J. Electrochem. 40 (2004) 886-892, doi:http://dx. doi.org/10.1023/B:RUEL.0000041354.70107. open in new tab
  87. T. Kondo, K. Honda, D.A. Tryk, A. Fujishima, AC Impedance Studies of Anodically Treated Polycrystalline Homoepitaxial Boron-doped Diamond Electrodes, Electrochim Acta 48 (2003) 2739-2748, doi:http://dx.doi.org/ 10.1016/S0013-4686(03)00391-8. open in new tab
  88. B.S. El-Dasher, J.J. Gray, J.W. Tringe, J. Biener, A.V. Hamza, C. Wild, E. Worner, P. Koidl, Crystallographic Anisotropy of Wear on a Polycrystalline Diamond Surface, Appl. Phys. Lett. 88 (2006) 241915, doi:http://dx.doi.org/10.1063/ 1.2213180. open in new tab
  89. J. Zavazalova, K. Prochazkova, K. Schwarzova-Peckova, Boron-doped Diamond Electrodes for Voltammetric Determination of Benxophenone-3, Anal. Lett. 49 (2016) 80-91, doi:http://dx.doi.org/10.1080/ 00032719.2014.1003425. open in new tab
  90. D. Ballutaud, N. Simon, H. Girard, E. Rzepka, B. Bouchet-Fabre, Photoelectron Spectroscopy of Hydrogen at the Polycrystalline Diamond Surface, Diam. Relat. Mater. 15 (2005) 716-719, doi:http://dx.doi.org/10.1016/j. diamond.2006.01.004. open in new tab
  91. A. Denisenko, C. Pietzka, A. Romanyuk, H. El-Hajj, E. Kohn, The Electronic Surface Barrier of Boron-doped Diamond by Anodic Oxidation, J. Appl. Phys. 103 (2008) 014904, doi:http://dx.doi.org/10.1063/1.2827481. open in new tab
  92. M. Wang, N. Simon, G. Charrier, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Distinction Between Surface Hydroxyl and Ether Groups on Boron-doped Diamond Electrodes Using a Chemical Approach, Electrochem. Commun. 12 (2010) 351-354, doi:http://dx.doi.org/10.1016/j. elecom.2009.12.029. open in new tab
  93. P. Niedzialkowski, R. Bogdanowicz, P. Zieba, J. Wysocka, J. Ryl, M. Sobaszek, T. Ossowski, Melamine-Modified Boron-Doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine, Electroanal. 28 (2016) 211-221, doi:http://dx.doi.org/10.1002/elan.201500528. open in new tab
  94. H. Girard, N. Simon, D. Ballutaud, A. Etcheberry, Correlation Between Flat- band Potential Position and Oxygenated Termination Nature on Boron-doped Diamond Electrodes, Comptes Rendus Chimie. 11 (2008) 1010-1015, doi: http://dx.doi.org/10.1016/j.crci.2008.01.014. open in new tab
  95. B. Hirschorn, B. M.E.Orazem, V. Tribollet, I.Frateur Vivier, M. Musiani, Determination of Effective Capacitance and Film Thickness from Constant- Phase-Element Parameters, Electrochim. Acta 55 (2010) 6218-6227, doi: http://dx.doi.org/10.1016/j.electacta.2009.10.065. open in new tab
  96. J. Hernando, S.Q. Lud, P. Bruno, D.M. Gruen, M. Stutzmann, J.A. Garrido, Electrochemical Impedance Spectroscopy of Oxidized and Hydrogen- Terminated Nitrogen-Induced Conductive Ultrananocrystalline Diamond, Electrochim. Acta 54 (2009) 1909-1915, doi:http://dx.doi.org/10.1016/j. electacta.2008.10.041. open in new tab
  97. Y.V. Pleskov, M.D. Krotova, V.G. Ralchenko, A.V. Khomich, R.A. Khmelnitskiy, Vaccum-Annealed Undoped Polycrystalline CVD Diamond: a new Electrode Material, Electrochim. Acta 49 (2003) 41-49, doi:http://dx.doi.org/10.1016/j. electacta.2003.05.005. open in new tab
  98. R. Trouillon, D. O'Hare, Comparison of Glassy Carbon and Boron Doped Diamond Electrodes: Resistance to Biofouling, Electrochim. Acta 55 (2010) 6586-6595, doi:http://dx.doi.org/10.1016/j.electacta.2010.06.016. open in new tab
  99. B.P. Chaplin, D.K. Hubler, J. Farrell, Understanding Anodic Wear at Boron Doped Diamond Film Electrodes, Electrochim. Acta 89 (2013) 122-131, doi: http://dx.doi.org/10.1016/j.electacta.2012.10.166. open in new tab
  100. T. Kashiwada, T. Watanabe, Y. Ootani, Y. Tateyama, Y. Einaga, A Study on Electrolytic Corrosion of Boron-doped Diamond Electrodes when Decomposing Organic Compounds, ACS Appl Mater. Interfaces 8 (2016) 28299-28305, doi:http://dx.doi.org/10.1021/acsami.5b11638. open in new tab
  101. S. Garcia-Segura, E.V. Dos Santos, C.A. Martínez-Huitle, Role of sp3/sp2 Ratio on the Electrocatalytic Properties of Boron-doped Diamond Electrodes: A Mini Review, Electrochem. Commun. 59 (2015) 52-55, doi:http://dx.doi.org/ 10.1016/j.elecom.2015.07.002. open in new tab
  102. Y. Einaga, J.S. Foord, G.M. Swain, Diamond Electrodes: Diversity and Maturity, Mater. Res. Bull. 39 (2014) 525-532, doi:http://dx.doi.org/10.1557/ mrs.2014.94. open in new tab
  103. P. Actis, A. Denoyelle, R. Boukherroub, S. Szunerits, Influence of the Surface Termination on the Electrochemical Properties of Boron-Doped Diamond (BDD) Interfaces, Electrochem. Comm. 10 (2008) 402-4063, doi:http://dx. doi.org/10.1016/j.elecom.2007.12.032. open in new tab
  104. A.F. Azevedo, M.R. Baldin, N.G. Ferreira, Doping Level Influence on Chemical Surface of Diamond Electrodes, J. Phys. Chem. Solids 74 (2013) 599-604, doi: http://dx.doi.org/10.1016/j.jpcs.2012.12.013. open in new tab
  105. H.B. Suffredini, V.A. Pedrosa, L. Codognoto, S.A.S. Machado, R.C. Rocha-Filho, L.A. Avaca, Enhanced Electrochemical Response of Boron-Doped Diamond Electrodes Brought on by a Cathodic Surface Pre-Treatment, Electrochem. Acta 49 (2004) 4021-4026, doi:http://dx.doi.org/10.1016/j. electacta.2004.01.082. open in new tab
  106. H. Girard, N. Simon, D. Ballutaud, M. Herlem, A. Etcheberry, Effect of Anodic and Cathodic Treatments on the Charge Transfer of Boron Doped Diamond Electrodes, Diam. Rel. Mater. 16 (2007) 316-325, doi:http://dx.doi.org/ 10.1016/j.diamond.2006.06.009. open in new tab
  107. T.N. Rao, D.A. Tryk, K. Hashimoto, A. Fujishima, Band-Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment, J. Electrochem. Soc. 146 (1999) 680-684, doi:http://dx.doi.org/ 10.1149/1.1391662. open in new tab
  108. N. Simon, H. Girard, M. Manesse, D. Ballutaud, A. Etcheberry, Electrochemical Preconditioning of Moderately Boron Doped Diamond Electrodes: Effect of annealing, Diam. Relat. Mater. 17 (2008) 1371-1375, doi:http://dx.doi.org/ 10.1016/j.diamond.2008.03.003. open in new tab
Verified by:
Gdańsk University of Technology

seen 167 times

Recommended for you

Meta Tags