Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity - Publication - Bridge of Knowledge

Search

Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity

Abstract

The electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The observed behavior of this characteristic feature varies among individual grains, depending on their crystallographic orientation. Still, there is not much information about this key factor in terms of its influence on the electrochemical response of BDD. In this study we compared two approaches towards BDD surface oxidation, namely: anodic polarization at potentiostatic and potentiodynamic conditions. The surface impedance measurements via Nanoscale Impedance Microscopy (NIM) allowed the confirmation of diversified propensity for the modification of surface termination in BDD. We showed that the NIM studies provide a deep understanding on the electrical characterization and variation of surface resistance in BDD electrodes. In order to evaluate the actual heterogeneity of electrochemical activity distribution, voltammetry, dynamic electrochemical impedance spectroscopy (DEIS) and scanning electrochemical microscopy (SECM) studies were performed. For each investigated electrode, departure from the Randles-Sevcik equation was observed, with its level depending on the surface heterogeneity and oxidation treatment, justifying the standardization of pre-treatment procedure and development of non-standard model for diffusion transport in proximity of BDD electrode.

Citations

  • 3 7

    CrossRef

  • 0

    Web of Science

  • 3 6

    Scopus

Cite as

Full text

download paper
downloaded 144 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHIMICA ACTA no. 297, pages 1018 - 1027,
ISSN: 0013-4686
Language:
English
Publication year:
2019
Bibliographic description:
Ryl J., Burczyk Ł., Zieliński A., Ficek M., Franczak A., Bogdanowicz R., Darowicki K.: Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity// ELECTROCHIMICA ACTA. -Vol. 297, (2019), s.1018-1027
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2018.12.050
Bibliography: test
  1. T.A. Ivandini, Y. Einaga, Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications, Chem. Commun. 53 (2017) 1338-1347. doi:10.1039/C6CC08681K. open in new tab
  2. Z.J. Ayres, J.C. Newland, M.E. Newton, S. Mandal, O.A. Williams, J.V. Macpherson, Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp2 carbon in boron doped diamond electrodes, Carbon. 121 (2017) 434-442. doi:10.1016/j.carbon.2017.06.008. open in new tab
  3. S.J. Cobb, Z.J. Ayres, J.V. Macpherson, Boron Doped Diamond: A Designer Electrode Material for the Twenty- First Century, Annu. Rev. Anal. Chem. 11 (2018) 463-484. doi:10.1146/annurev-anchem-061417-010107. open in new tab
  4. T. Watanabe, S. Yoshioka, T. Yamamoto, H. Sepehri-Amin, T. Ohkubo, S. Matsumura, Y. Einaga, The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties, Carbon. 137 (2018) 333-342. doi:10.1016/j.carbon.2018.05.026. open in new tab
  5. L.A. Hutton, J.G. Iacobini, E. Bitziou, R.B. Channon, M.E. Newton, J.V. Macpherson, Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes, Anal. Chem. 85 (2013) 7230-7240. doi:10.1021/ac401042t. open in new tab
  6. J.V. Macpherson, A practical guide to using boron doped diamond in electrochemical research, Phys. Chem. Chem. Phys. 17 (2015) 2935-2949. doi:10.1039/C4CP04022H. open in new tab
  7. J.A. Bennett, J. Wang, Y. Show, G.M. Swain, Effect of sp2-Bonded Nondiamond Carbon Impurity on the Response of Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, J. Electrochem. Soc. 151 (2004) E306-E313. doi:10.1149/1.1780111. open in new tab
  8. J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, K. Darowicki, Study on surface termination of boron-doped diamond electrodes under anodic polarization in H 2 SO 4 by means of dynamic impedance technique, Carbon. 96 (2016) 1093-1105. doi:10.1016/j.carbon.2015.10.064. open in new tab
  9. M. Tachiki, T. Fukuda, K. Sugata, H. Seo, H. Umezawa, H. Kawarada, Nanofabrication on Hydrogen- Terminated Diamond Surfaces by Atomic Force Microscope Probe-Induced Oxidation, Jpn. J. Appl. Phys. 39 (2000) 4631-4632. doi:10.1143/JJAP.39.4631. open in new tab
  10. I. Yagi, H. Notsu, T. Kondo, D.A. Tryk, A. Fujishima, Electrochemical selectivity for redox systems at oxygen- terminated diamond electrodes, J. Electroanal. Chem. 473 (1999) 173-178. doi:10.1016/S0022-0728(99)00027- 3. open in new tab
  11. K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, K. Kajimura, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films, J. Appl. Phys. 81 (1997) 744-753. doi:10.1063/1.364299. open in new tab
  12. H.A. Girard, E. de La Rochefoucauld, D. Ballutaud, A. Etcheberry, N. Simon, Controlled Anodic Treatments on Boron-Doped Diamond Electrodes Monitored by Contact Angle Measurements, Electrochem. Solid-State Lett. 10 (2007) F34-F37. doi:10.1149/1.2743824. open in new tab
  13. N. Simon, H. Girard, D. Ballutaud, S. Ghodbane, A. Deneuville, M. Herlem, A. Etcheberry, Effect of H and O termination on the charge transfer of moderately boron doped diamond electrodes, Diam. Relat. Mater. 14 (2005) 1179-1182. doi:10.1016/j.diamond.2004.12.013. open in new tab
  14. H. Girard, N. Simon, D. Ballutaud, M. Herlem, A. Etcheberry, Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes, Diam. Relat. Mater. 16 (2007) 316-325. doi:10.1016/j.diamond.2006.06.009. open in new tab
  15. S.C. B. Oliveira, A.M. Oliveira-Brett, Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode, Electrochimica Acta. 55 (2010) 4599-4605. doi:10.1016/j.electacta.2010.03.016. open in new tab
  16. B.P. Chaplin, D.K. Hubler, J. Farrell, Understanding anodic wear at boron doped diamond film electrodes, Electrochimica Acta. 89 (2013) 122-131. doi:10.1016/j.electacta.2012.10.166. open in new tab
  17. R. Trouillon, Y. Einaga, M.A.M. Gijs, Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling, Electrochem. Commun. 47 (2014) 92-95. doi:10.1016/j.elecom.2014.07.028. open in new tab
  18. M. Wang, N. Simon, C. Decorse-Pascanut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes, Electrochimica Acta. 54 (2009) 5818-5824. doi:10.1016/j.electacta.2009.05.037. open in new tab
  19. Y.V. Pleskov, Y.E. Evstefeeva, M.D. Krotova, V.P. Varnin, I.G. Teremetskaya, Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces, J. Electroanal. Chem. 595 (2006) 168-174. doi:10.1016/j.jelechem.2006.07.010. open in new tab
  20. R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional Surface Termination of Diamond by Electrochemical Oxidation, Langmuir. 28 (2012) 47-50. doi:10.1021/la2039366. open in new tab
  21. N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of Grain-Dependent Boron Uptake on the Electrochemical and Electrical Properties of Polycrystalline Boron Doped Diamond Electrodes, J. Phys. Chem. B. 110 (2006) 5639-5646. doi:10.1021/jp0547616. open in new tab
  22. Y.V. Pleskov, Y.E. Evstefeeva, V.P. Varnin, I.G. Teremetskaya, Synthetic Semiconductor Diamond Electrodes: Electrochemical Characteristics of Homoepitaxial Boron-doped Films Grown at the (111), (110), and (100) Faces of Diamond Crystals, Russ. J. Electrochem. 40 (2004) 886-892. doi:10.1023/B:RUEL.0000041354.70107.c8. open in new tab
  23. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes, J. Electrochem. Soc. 161 (2014) H359-H364. doi:10.1149/2.016406jes. open in new tab
  24. S. Ghodbane, D. Ballutaud, F. Omnès, C. Agnès, Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films, Diam. Relat. Mater. 19 (2010) 630-636. doi:10.1016/j.diamond.2010.01.014. open in new tab
  25. A. Zieliński, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki, Local impedance imaging of boron-doped polycrystalline diamond thin films, Appl. Phys. Lett. 105 (2014) 131908. doi:10.1063/1.4897346. open in new tab
  26. J. Ryl, A. Zielinski, L. Burczyk, R. Bogdanowicz, T. Ossowski, K. Darowicki, Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices, Electrochimica Acta. 242 (2017) 268-279. doi:10.1016/j.electacta.2017.05.027. open in new tab
  27. J. Ryl, A. Zielinski, R. Bogdanowicz, K. Darowicki, Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization, Electrochem. Commun. 83 (2017) 41-45. doi:10.1016/j.elecom.2017.08.019. open in new tab
  28. A. Zielinski, M. Cieslik, M. Sobaszek, R. Bogdanowicz, K. Darowicki, J. Ryl, Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes, Preprint. (2018). doi:https://arxiv.org/abs/1811.05709. open in new tab
  29. R. Hoffmann, A. Kriele, H. Obloh, N. Tokuda, W. Smirnov, N. Yang, C.E. Nebel, The creation of a biomimetic interface between boron-doped diamond and immobilized proteins, Biomaterials. 32 (2011) 7325-7332. doi:10.1016/j.biomaterials.2011.06.052. open in new tab
  30. B.A. Brookes, T.J. Davies, A.C. Fisher, R.G. Evans, S.J. Wilkins, K. Yunus, J.D. Wadhawan, R.G. Compton, Computational and Experimental Study of the Cyclic Voltammetry Response of Partially Blocked Electrodes. Part 1. Nonoverlapping, Uniformly Distributed Blocking Systems, J. Phys. Chem. B. 107 (2003) 1616-1627. doi:10.1021/jp021810v. open in new tab
  31. T.J. Davies, R.R. Moore, C.E. Banks, R.G. Compton, The cyclic voltammetric response of electrochemically heterogeneous surfaces, J. Electroanal. Chem. 574 (2004) 123-152. doi:10.1016/j.jelechem.2004.07.031. open in new tab
  32. R. Bogdanowicz, M. Sawczak, P. Niedzialkowski, P. Zieba, B. Finke, J. Ryl, J. Karczewski, T. Ossowski, Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film, J. Phys. Chem. C. 118 (2014) 8014-8025. doi:10.1021/jp5003947. open in new tab
  33. M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, R. Bogdanowicz, Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates, Appl. Surf. Sci. 387 (2016) 846-856. doi:10.1016/j.apsusc.2016.06.165. open in new tab
  34. K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy, Nanoscale. 7 (2015) 551-558. doi:10.1039/C4NR04417G. open in new tab
  35. D. Nidzworski, K. Siuzdak, P. Niedziałkowski, R. Bogdanowicz, M. Sobaszek, J. Ryl, P. Weiher, M. Sawczak, E. Wnuk, W.A. Goddard, A. Jaramillo-Botero, T. Ossowski, A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond, Sci. Rep. 7 (2017) 15707. doi:10.1038/s41598-017-15806-7. open in new tab
  36. A. Zieliński, K. Darowicki, Application of multisine nanoscale impedance microscopy to heterogeneous alloy surface investigations: Application of multisine NIM to alloy surface investigations, Surf. Interface Anal. 47 (2015) 1109-1113. doi:10.1002/sia.5855. open in new tab
  37. K. Darowicki, Theoretical description of the measuring method of instantaneous impedance spectra, J. Electroanal. Chem. 486 (2000) 101-105. doi:10.1016/S0022-0728(00)00110-8. open in new tab
  38. P. Slepski, K. Darowicki, E. Janicka, G. Lentka, A complete impedance analysis of electrochemical cells used as energy sources, J. Solid State Electrochem. 16 (2012) 3539-3549. doi:10.1007/s10008-012-1825-1. open in new tab
  39. K. Darowicki, P. Ślepski, Dynamic electrochemical impedance spectroscopy of the first order electrode reaction, J. Electroanal. Chem. 547 (2003) 1-8. doi:10.1016/S0022-0728(03)00154-2. open in new tab
  40. G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic Electrochemical Impedance Spectroscopy for Solid State Chemistry, Solid State Phenom. 90-91 (2003) 103-108. doi:10.4028/www.scientific.net/SSP.90-91.103. open in new tab
  41. H. Gerengi, H. Goksu, P. Slepski, The inhibition effect of mad Honey on corrosion of 2007-type aluminium alloy in 3.5% NaCl solution, Mater. Res. 17 (2014) 255-264. doi:10.1590/S1516-14392013005000174. open in new tab
  42. J. Ryl, K. Darowicki, Impedance Monitoring of Carbon Steel Cavitation Erosion under the Influence of Corrosive Factors, J. Electrochem. Soc. 155 (2008) P44-P49. doi:10.1149/1.2840619. open in new tab
  43. M.A. Amin, N. El-Bagoury, M.H.H. Mahmoud, M.M. Hessien, S.S. Abd El-Rehim, J. Wysocka, J. Ryl, Catalytic impact of alloyed Al on the corrosion behavior of Co 50 Ni 23 Ga 26 Al 1.0 magnetic shape memory alloy and catalysis applications for efficient electrochemical H 2 generation, RSC Adv. 7 (2017) 3635-3649. doi:10.1039/C6RA25384A. open in new tab
  44. H. Gerengi, P. Slepski, E. Ozgan, M. Kurtay, Investigation of corrosion behavior of 6060 and 6082 aluminum alloys under simulated acid rain conditions: Corrosion behavior of 6060 and 6082 Al alloys under acid rain, Mater. Corros. 66 (2015) 233-240. doi:10.1002/maco.201307287. open in new tab
  45. M. Szociński, K. Darowicki, K. Schaefer, Application of impedance imaging to evaluation of organic coating degradation at a local scale, J. Coat. Technol. Res. 10 (2013) 65-72. doi:10.1007/s11998-012-9458-y. open in new tab
  46. B. Wouters, R. Claessens, A. Hubin, H. Terryn, On the use of instantaneous impedance for post-electrochemical treatment analysis, Electrochem. Commun. 93 (2018) 187-190. doi:10.1016/j.elecom.2018.07.014. open in new tab
  47. K. Darowicki, S. Krakowiak, P. Slepski, The time dependence of pit creation impedance spectra, Electrochem. Commun. 6 (2004) 860-866. doi:10.1016/j.elecom.2004.06.010. open in new tab
  48. L. Burczyk, K. Darowicki, Local electrochemical impedance spectroscopy in dynamic mode of galvanic coupling, Electrochimica Acta. 282 (2018) 304-310. doi:10.1016/j.electacta.2018.05.192. open in new tab
  49. J. Wysocka, S. Krakowiak, J. Ryl, Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring, Electrochimica Acta. 258 (2017) 1463-1475. doi:10.1016/j.electacta.2017.12.017. open in new tab
  50. J. Orlikowski, J. Ryl, M. Jarzynka, S. Krakowiak, K. Darowicki, Instantaneous Impedance Monitoring of Aluminum Alloy 7075 Corrosion in Borate Buffer with Admixed Chloride Ions, CORROSION. 71 (2015) 828- 838. doi:10.5006/1546. open in new tab
  51. A.S. Bondarenko, I.E.L. Stephens, H.A. Hansen, F.J. Pérez-Alonso, V. Tripkovic, T.P. Johansson, J. Rossmeisl, J.K. Nørskov, I. Chorkendorff, The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study, Langmuir. 27 (2011) 2058-2066. doi:10.1021/la1042475. open in new tab
  52. R. O'Hayre, G. Feng, W.D. Nix, F.B. Prinz, Quantitative impedance measurement using atomic force microscopy, J. Appl. Phys. 96 (2004) 3540-3549. doi:10.1063/1.1778217. open in new tab
  53. F. Gao, L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parameters, Comput. Optim. Appl. 51 (2012) 259-277. doi:10.1007/s10589-010-9329-3. open in new tab
  54. K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning Electrochemical Microscopy and Conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels, J. Phys. Chem. B. 108 (2004) 15117-15127. doi:10.1021/jp048222x. open in new tab
  55. C. Deslouis, J. de Sanoit, S. Saada, C. Mer, A. Pailleret, H. Cachet, P. Bergonzo, Electrochemical behaviour of (111) B-Doped Polycrystalline Diamond: Morphology/surface conductivity/activity assessed by EIS and CS- AFM, Diam. Relat. Mater. 20 (2011) 1-10. doi:10.1016/j.diamond.2010.10.005. open in new tab
  56. R. Bogdanowicz, Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica, Metrol. Meas. Syst. 21 (2014) 381-388. doi:10.2478/mms-2014- 0059. open in new tab
  57. Z.L. Wang, C. Lu, J.J. Li, C.Z. Gu, Effect of gas composition on the growth and electrical properties of boron- doped diamond films, Diam. Relat. Mater. 18 (2009) 132-135. doi:10.1016/j.diamond.2008.10.040. open in new tab
  58. P. Niedziałkowski, R. Bogdanowicz, P. Zięba, J. Wysocka, J. Ryl, M. Sobaszek, T. Ossowski, Melamine- modified Boron-doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine, Electroanalysis. 28 (2016) 211-221. doi:10.1002/elan.201500528. open in new tab
  59. M. Wang, N. Simon, G. Charrier, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach, Electrochem. Commun. 12 (2010) 351-354. doi:10.1016/j.elecom.2009.12.029. open in new tab
  60. H.A. Girard, N. Simon, D. Ballutaud, A. Etcheberry, Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes, Comptes Rendus Chim. 11 (2008) 1010- 1015. doi:10.1016/j.crci.2008.01.014. open in new tab
  61. R. Trouillon, D. O'Hare, Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling, Electrochimica Acta. 55 (2010) 6586-6595. doi:10.1016/j.electacta.2010.06.016. open in new tab
  62. J. Hernando, S.Q. Lud, P. Bruno, D.M. Gruen, M. Stutzmann, J.A. Garrido, Electrochemical impedance spectroscopy of oxidized and hydrogen-terminated nitrogen-induced conductive ultrananocrystalline diamond, Electrochimica Acta. 54 (2009) 1909-1915. doi:10.1016/j.electacta.2008.10.041. open in new tab
  63. S. Garcia-Segura, E. Vieira dos Santos, C.A. Martínez-Huitle, Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: A mini review, Electrochem. Commun. 59 (2015) 52-55. doi:10.1016/j.elecom.2015.07.002. open in new tab
  64. Y.A. Mankelevich, P.W. May, New insights into the mechanism of CVD diamond growth: Single crystal diamond in MW PECVD reactors, Diam. Relat. Mater. 17 (2008) 1021-1028. doi:10.1016/j.diamond.2008.03.022. open in new tab
  65. A. Denisenko, C. Pietzka, A. Romanyuk, H. El-Hajj, E. Kohn, The electronic surface barrier of boron-doped diamond by anodic oxidation, J. Appl. Phys. 103 (2008) 014904. doi:10.1063/1.2827481. open in new tab
  66. H. Notsu, Introduction of Oxygen-Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization, Electrochem. Solid-State Lett. 2 (1999) 522. doi:10.1149/1.1390890. open in new tab
  67. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochimica Acta. 55 (2010) 6218- 6227. doi:10.1016/j.electacta.2009.10.065. open in new tab
  68. P.R. Unwin, A.J. Bard, Scanning electrochemical microscopy. 9. Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes, J. Phys. Chem. 95 (1991) 7814- 7824. doi:10.1021/j100173a049. open in new tab
  69. A.J. Bard, M.V. Mirkin, P.R. Unwin, D.O. Wipf, Scanning electrochemical microscopy. 12. Theory and experiment of the feedback mode with finite heterogeneous electron-transfer kinetics and arbitrary substrate size, J. Phys. Chem. 96 (1992) 1861-1868. doi:10.1021/j100183a064. open in new tab
  70. T.J. Davies, C.E. Banks, R.G. Compton, Voltammetry at spatially heterogeneous electrodes, J. Solid State Electrochem. 9 (2005) 797-808. doi:10.1007/s10008-005-0699-x. open in new tab
  71. J. Zhao, A. Ozden, S. Shahgaldi, I.E. Alaefour, X. Li, F. Hamdullahpur, Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells, Energy. 150 (2018) 69-76. doi:10.1016/j.energy.2018.02.134. open in new tab
  72. F. Schröper, D. Brüggemann, Y. Mourzina, B. Wolfrum, A. Offenhäusser, D. Mayer, Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization, Electrochimica Acta. 53 (2008) 6265-6272. doi:10.1016/j.electacta.2008.03.068. open in new tab
  73. C. Amatore, J.M. Savéant, D. Tessier, Charge transfer at partially blocked surfaces, J. Electroanal. Chem. Interfacial Electrochem. 147 (1983) 39-51. doi:10.1016/S0022-0728(83)80055-2. open in new tab
  74. R.S. Nicholson, Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics., Anal. Chem. 37 (1965) 1351-1355. doi:10.1021/ac60230a016. open in new tab
  75. J. Heinze, Cyclovoltammetrie -die "Spektroskopie" des Elektrochemikers, Angew. Chem. 96 (1984) 823-840. doi:10.1002/ange.19840961104. open in new tab
  76. M. Ensch, V.Y. Maldonado, G.M. Swain, R. Rechenberg, M.F. Becker, T. Schuelke, C.A. Rusinek, Isatin Detection Using a Boron-Doped Diamond 3-in-1 Sensing Platform, Anal. Chem. 90 (2018) 1951-1958. doi:10.1021/acs.analchem.7b04045. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 225 times

Recommended for you

Meta Tags