Abstract
This paper presents comprehensive analytical, numerical and experimental research of the compact and integrated high-power pulse generation and forming system based on the flux compression generator and the electro-explosive forming fuse. The paper includes the analysis of the presented solution, starting from the individual components studies, i.e., the separate flux compression generator tests in field conditions and the forming fuse laboratory test, through the formulation of the extended quasi-empirical components models aimed at enabling their optimal parameters determination at the early design stage and ending with the description of the integrated system studies in field conditions. Based on detailed research, it was possible to achieve very high parameters of the generated pulses, i.e., overvoltages of up to 340 kV with the available source power reaching 25 GW. A very high convergence of the simulation and the results of experimental research has been obtained. The parameters of the presented system have been compared with other literature solutions and the selected topology of the high power pulse generation and forming system has been distinguished against other available ones, e.g., based on Marx generators and forming lines.
Citations
-
3
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/en15010099
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
ENERGIES
no. 15,
ISSN: 1996-1073 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Nowak M., Jakubiuk K., Kowalak D., Pikoń M., Czucha J., Jankowski P.: Compact and Integrated High-Power Pulse Generation and Forming System// ENERGIES -Vol. 15,iss. 1 (2022), s.99-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/en15010099
- Sources of funding:
-
- Project NIE DOTYCZY
- Verified by:
- Gdańsk University of Technology
seen 250 times