Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples - Publication - Bridge of Knowledge

Search

Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples

Abstract

Developed and validated analytical methods for the determination of a wide spectrum of pesticide residues in honey and honeybee samples after the modification of QuEChERS extraction in combination with gas chromatography–tandem quadrupole mass spectrometry (GC-MS/MS) and liquid chromatography–tandem quadrupole mass spectrometry (LC-MS/MS) were discussed and compared. The developed methods were evaluated regarding the utilized equipment and reagents using Eco-Scale and compared in terms of extraction time, accuracy, precision, sensitivity and versatility, with similar procedures. The results proved that the QuEChERS protocol in combination with LC and GC techniques fulfills the requirements of green analytical chemistry, so it can be used as a tool in environmental monitoring. The recovery was 85–116% for honey and 85.5–103.5% for honeybee samples. The developed methods were successfully applied in monitoring real samples collected from three districts of Pomerania in Poland. Analysis of real samples revealed the presence of the following pesticides: bifenthrin, fenpyroximate, methidathione, spinosad, thiamethoxam, triazophos, metconazole and cypermethrin at levels higher than the MRLs established by the EU.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 121 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MOLECULES no. 23, edition 10, pages 2582 - 2595,
ISSN: 1420-3049
Language:
English
Publication year:
2018
Bibliographic description:
Bargańska Ż., Konieczka P., Namieśnik J.: Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples// MOLECULES. -Vol. 23, iss. 10 (2018), s.2582-2595
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules23102582
Bibliography: test
  1. Chiesa, L.M.; Labella, G.F.; Giorgi, A.; Panseri, S.; Pavlovic, R.; Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482-490. [CrossRef] [PubMed] open in new tab
  2. Panseri, S.; Manzo, A.; Chiesa, L.M.; Giorgi, A. Melissopallynological and volatile compounds analysis of buckwheat honey from different geographical origins and their role in botanical determination. J. Chem. 2013, 2013, 904202. [CrossRef] open in new tab
  3. Bargańska,Ż.; Namieśnik, J. Pesticide Analysis of Bee and Bee Product Samples. Crit. Rev. Anal. Chem. 2010, 40, 159-171. [CrossRef] open in new tab
  4. Dong, H.; Xiao, K.; Xian, Y.; Wu, Y. Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS). Food Chem. 2018, 240, 717-724. [CrossRef] [PubMed] open in new tab
  5. Dong, H.; Luo, D.; Xian, Y.; Luo, H.; Guo, X.; Li, C.; Zhao, M. Adulteration identification of commercial honey with the C-4 sugar content of negative values by an elemental analyzer and liquid chromatography coupled to isotope ratio mass spectroscopy. J. Agric. Food Chem. 2016, 64, 3258-3265. [CrossRef] [PubMed] open in new tab
  6. Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity-USA. Apidologie 2010, 41, 312-331. [CrossRef] open in new tab
  7. Francis, R.M.; Nielsen, S.L.; Kryger, P. Varroa-Virus Interaction in Collapsing Honey Bee Colonies. PLoS ONE 2013, 8, e57540. [CrossRef] [PubMed] open in new tab
  8. Staveley, J.P.; Law, S.A.; Fairbrother, A.; Menzie, C.A. A Causal Analysis of Observed Declines in Managed Honey Bees Apis mellifera. Hum. Ecol. Risk Assess. 2014, 20, 566-591. [CrossRef] [PubMed] open in new tab
  9. Kujawski, M.W.; Namieśnik, J. Challenges in preparing honey samples for chromatographic determination of contaminants and trace residues. TrAC Trends Anal. Chem. 2008, 27, 785-793. [CrossRef] open in new tab
  10. Garcia-Reyes, J.F.; Ferrer, C.; Gómez-Ramos, J.M.; Molina-Diaz, A.; Fernández-Alba, A.R. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC Trends Anal. Chem. 2007, 26, 828-841. [CrossRef] open in new tab
  11. Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honeybees. Methods X 2016, 3, 452-458. open in new tab
  12. Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485, 633-642. [CrossRef] [PubMed] open in new tab
  13. Gil García, M.D.; Uclés Duque, S.; Lozano Fernández, A.B.; Sosa, A.; Fernández-Alba, A.R. Multiresidue method for trace pesticide analysis in honeybee wax comb by GC-QqQ-MS. Talanta 2017, 163, 54-64. [CrossRef] [PubMed] open in new tab
  14. López, S.H.; Lozano, A.; Sosa, A.; Hernando, M.D.; Fernández-Alba, A.R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 2016, 163, 44-53. [CrossRef] [PubMed] open in new tab
  15. Rolke, D.; Persigehl, M.; Peters, B.; Sterk, G.; Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: Residues of clothianidin in pollen, nectar and honey. Ecotoxicology 2016, 25, 1691-1701. [CrossRef] [PubMed] open in new tab
  16. De Pinho, G.P.; Neves, A.A.; de Queiroz, M.; Silverio, F.O. Optimization of the liquid-liquid extraction method and low temperature purification LLE-LTP for pesticide residue analysis in honey samples by gas chromatography. Food Control 2010, 21, 1307-1311. [CrossRef] open in new tab
  17. Jiang, Z.; Li, H.; Cao, X.; Du, P.; Shao, H.; Jin, F.; Jin, M.; Wang, J. Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chem. 2017, 228, 411-419. [CrossRef] [PubMed] open in new tab
  18. Walorczyk, S.; Gnusowski, B. Development and validation of a multi-residue method for the determination of pesticides in honeybees using acetonitrile-based extraction and gas chromatography-tandem quadrupole mass spectrometry. J. Chromatogr. A 2009, 1216, 6522-6531. [CrossRef] [PubMed] open in new tab
  19. Zheng, W.; Park, J.-A.; Abd El-Aty, A.M.; Kim, S.-K.; Cho, S.-H.; Choi, J.-M.; Yi, H.; Cho, S.-M.; Ramadan, A.; Jeong, J.-H.; et al. Development and validation of modified QuEChERS method coupled with LC-MS/MS for simultaneous determination of cymiazole, fipronil, coumaphos, fluvalinate, amitraz, and its metabolite in various types of honey and royal jelly. J. Chromatogr. B 2018, 1072, 60-69. [CrossRef] [PubMed] open in new tab
  20. Jin, Y.; Zhang, J.; Zhao, W.; Zhang, W.; Wang, L.; Zhou, J.; Li, Y. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 221, 1298-1307. [CrossRef] [PubMed] open in new tab
  21. David, A.; Botias, C.; Abdul-Sada, A.; Goulson, D.; Hill, E.M. Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled-down QuEChERS method for exposure assessment. Anal. Bioanal. Chem. 2015, 407, 8151-8162. [CrossRef] [PubMed] open in new tab
  22. Botias, C.; David, A.; Hill, E.M.; Goulson, D. Quantifying Exposure of Wild Bumblebees to Mixtures of Agrochemicals in Agricultural and Urban Landscapes. Environ. Pollut. 2017, 222, 73-82. [CrossRef] [PubMed] open in new tab
  23. Giroud, B.; Vauchez, A.; Vulliet, E.; Wiest, L.; Buleté, A. Trace level determination of pyrethroid and neonicotinoid insecticides in beebread using acetonitrile-based extraction followed by analysis with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1316, 53-61. [CrossRef] [PubMed] open in new tab
  24. Parrilla Vázquez, P.; Lozano, A.; Uclés, S.; Gómez Ramos, M.M.; Fernández-Alba, A.R. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1426, 161-173. [CrossRef] [PubMed] open in new tab
  25. Niell, S.; Jesús, F.; Pérez, C.; Mendoza, Y.; Díaz, R.; Franco, R.; Cesio, V.; Heinzen, H. QuEChERS Adaptability for the Analysis of Pesticide Residues in Beehive Products Seeking the Development of an Agroecosystem Sustainability Monitor. J. Agric. Food Chem. 2015, 63, 4484-4492. [CrossRef] [PubMed] open in new tab
  26. Dong, H.; Xiao, K.; Xian, Y.; Wu, Y.; Zhu, L. A novel approach for simultaneous analysis of perchlorate (ClO 4 − ) and bromate (BrO 3 open in new tab
  27. − ) in fruits and vegetables using modified QuEChERS combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 270, 196-203. [CrossRef] [PubMed] open in new tab
  28. Xian, Y.; Dong, H.; Wu, Y.; Guo, X.; Hou, X.; Wang, B. QuEChERS-based purification method coupled to ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to determine six quaternary ammonium compounds (QACs) in dairy products. Food Chem. 2016, 212, 96-103. [CrossRef] [PubMed] open in new tab
  29. Souza Tette, P.A.; Guidi, L.R.; de Abreu Glória, M.B.; Fernandes, C. Pesticides in honey: A review on chromatographic analytical methods. Talanta 2016, 149, 124-141. [CrossRef] [PubMed] open in new tab
  30. Chiaradia, M.C.; Collins, C.H.; Jardim, I.C.S.F. The state of the art of chromatography associated with the tandem mass spectrometry for toxic compound analyses in food. Quim. Nova 2008, 31, 623-636. [CrossRef] open in new tab
  31. Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Gad Alla, S.A.; Lotfy, H.M. Simultaneous determination of 200 pesticide residues in honey using gas chromatography-tandem mass spectrometry in conjunction with streamlined quantification approach. J. Chromatogr. A 2016, 1427, 142-160. [CrossRef] [PubMed] open in new tab
  32. Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40-61. [CrossRef] [PubMed] open in new tab
  33. Martins, H.A., Jr.; Bustillos, O.V.; Faustino Pires, M.A.; Lebre, D.T.; Wang, A.Y. Determination of chloramphenicol residues in industrialized milk and honey samples using LC-MS/MS. Quim. Nova 2006, 29, 586-592. open in new tab
  34. Koel, M. Do we need Green Analytical Chemistry? Green Chem. 2016, 18, 923-931. [CrossRef] open in new tab
  35. Tobiszewski, M. Metrics for green analytical chemistry. Anal. Methods 2016, 8, 2993-2999. [CrossRef] open in new tab
  36. Turner, C. Sustainable analytical chemistry-More than just being green. Pure Appl. Chem. 2013, 85, 2217-2229. [CrossRef] open in new tab
  37. Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed. Available online: http://www.crl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2009_10684.pdf (accessed on 10 July 2018). open in new tab
  38. Uclésa, S.; Lozanoa, A.; Sosab, A.; Parrilla Vázqueza, P.; Valverdea, A.; Fernández-Albaa, A.R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72-81. [CrossRef] [PubMed] open in new tab
  39. Pool, C.F. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. J. Chromatogr. A 2007, 1158, 241-250. [CrossRef] [PubMed] open in new tab
  40. Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2006, 2, 1-7. [CrossRef] [PubMed] open in new tab
  41. Gałuszka, A.; Konieczka, P.; Migaszewski, Z.M.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61-72. [CrossRef] open in new tab
  42. Barganska,Ż.;Ślebioda, M.; Namieśnik, J. Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control 2013, 31, 196-201. [CrossRef] open in new tab
  43. Bargańska,Ż.;Ślebioda, M.; Namieśnik, J. Development of a Gas Chromatography-Tandem Mass Spectrometry Procedure for Determination of Pesticide Residues in Honey and Honeybee Samples. J. Chromatogr. Sep. Tech. 2015, 5, 1-6.
  44. Bargańska,Ż.;Ślebioda, M.; Namieśnik, J. Determination of Pesticide Residues in Honeybees using Modified QUEChERS Sample Work-Up and Liquid Chromatography-Tandem Mass Spectrometry. Molecues 2014, 19, 2911-2924. [CrossRef] [PubMed] open in new tab
  45. Sample Availability: Samples of the compounds are not available from the authors. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 152 times

Recommended for you

Meta Tags