Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design
Abstract
The study aims to develop and assess an algorithm for efficiently generating parking spot layouts within predefined area outlines. The algorithm is an attempt to streamline the decisionmaking process by producing different design variants and optimizing the utilization of available space. The algorithm’s primary objective is to streamline decision-making by generating diverse design variants while optimizing the use of available space, with a distinct focus on mitigating environmental impact and fostering ecological well-being. Researchers conduct thorough tests on the algorithm across various outlines, resulting in multiple layout options for each scenario. They analyzed five representative parking locations and compare the algorithm’s results with the existing parking spot layouts. Throughout the evaluation process, they consider quantitative and qualitative data, considering the complexities of communication solutions within each context. The study findings indicate that the algorithm demonstrates comparable or superior performance to existing solutions. Overall, the study highlights the promising potential of algorithmic design approaches in the context of parking lot automated design. Achieving a balance between innovative designs and user-friendly layouts is crucial, and this is achievable by conducting comprehensive analyses that consider various factors. The consistent findings underscore the algorithm’s potential to significantly contribute to sustainable design practices in parking lot layouts, highlighting decreased environmental strain, efficient land use, and creating urban spaces that prioritize ecological benefits. Furthermore, seamlessly integrating algorithmic solutions with existing communication systems is paramount to ensure practical applicability in real-world scenarios. This integration will enable more effective and practical implementation of the algorithm’s outputs in actual parking lot design projects.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/su16020592
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Sustainability
no. 16,
ISSN: - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Cudzik J., Nessel M.: Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design// Sustainability -,iss. 16 (2024),
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/su16020592
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 138 times