Abstract
Dynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide spectrum of video processing applications. Despite its relevance, the problem of concurrent noise and dynamic blur has not yet been addressed in the deep learning literature. To this end, we analyze existing state-of-the-art deblurring methods and encounter their limitations in handling non-uniform blur under strong noise conditions. Thereafter, we propose a first-to-date work that addresses blur- and noise-free frame recovery by casting the restoration problem into a multi-task learning framework. Our contribution is threefold: a) We propose R2-D4, a multi-scale encoder architecture attached to two cascaded decoders performing the restoration task in two steps. b) We design multi-scale residual dense modules, bolstered by our modulated efficient channel attention, to enhance the encoder representations via augmenting deformable convolutions to capture longer-range and object-specific context that assists blur kernel estimation under strong noise. c) We perform extensive experiments and evaluate state-of-the-art approaches on a publicly available dataset under different noise levels. The proposed method performs favorably under all noise levels while retaining a reasonably low computational and memory footprint.
Citations
-
4
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/ACCESS.2021.3129602
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE Access
no. 9,
pages 157437 - 157446,
ISSN: 2169-3536 - Language:
- English
- Publication year:
- 2021
- Bibliographic description:
- Katsaros E., Kopa Ostrowski P., Węsierski D., Jezierska A.: Concurrent Video Denoising and Deblurring for Dynamic Scenes// IEEE Access -Vol. 9, (2021), s.157437-157446
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/access.2021.3129602
- Verified by:
- Gdańsk University of Technology
seen 136 times