Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air - Publication - Bridge of Knowledge

Search

Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

Abstract

The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

Citations

  • 1 7 9

    CrossRef

  • 0

    Web of Science

  • 1 8 1

    Scopus

Cite as

Full text

download paper
downloaded 163 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
Environments no. 4, edition 1, pages 1 - 15,
ISSN: 2076-3298
Language:
English
Publication year:
2017
Bibliographic description:
Szulczyński B., Gębicki J.. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments, 2017, Vol. 4, iss. 1, s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.3390/environments4010021
Bibliography: test
  1. Lazarova, V.; Abed, B.; Markovska, G.; Dezenclos, T.; Amara, A. Control of odour nuisance in urban areas: The efficiency and social acceptance of the application of masking agents. Water Sci. Technol. 2013, 68, 614-621. [CrossRef] [PubMed] open in new tab
  2. Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. open in new tab
  3. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362-367. [CrossRef] [PubMed] open in new tab
  4. Gostelow, P.; Parsons, S.A.; Stuetz, R.M. Odour measurements for sewage treatment works. Water Res. 2001, 35, 579-597. [CrossRef] open in new tab
  5. Taylor, S.M.; Sider, D.; Hampson, C.; Taylor, S.J.; Wilson, K.; Walter, S.D.; Eyles, J.D. Community Health Effects of a Petroleum Refinery. Ecosyst. Health 2008, 3, 27-43. [CrossRef] open in new tab
  6. Henshaw, P.; Nicell, J.; Sikdar, A. Parameters for the assessment of odour impacts on communities. Atmos. Environ. 2006, 40, 1016-1029. [CrossRef] open in new tab
  7. Daud, N.M.; Sheikh Abdullah, S.R.; Abu Hasan, H.; Yaakob, Z. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf. Environ. Prot. 2014, 94, 487-508. [CrossRef] open in new tab
  8. Yan, L.; Wang, Y.; Li, J.; Ma, H.; Liu, H.; Li, T.; Zhang, Y. Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 2014, 341, 87-93. [CrossRef] open in new tab
  9. Yavuz, Y.; Koparal, A.S.; Ogutveren, U.B. Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 2010, 258, 201-205. [CrossRef] open in new tab
  10. Capelli, L.; Sironi, S.; Barczak, R.; Il Grande, M.; del Rosso, R. Validation of a method for odor sampling on solid area sources. Water Sci. Technol. 2012, 66, 1607-1613. [PubMed] open in new tab
  11. Bokowa, A.H. Review of odour legislation. Chem. Eng. Trans. 2010, 23, 31-36. [CrossRef] open in new tab
  12. Trincavelli, M.; Coradeschi, S.; Loutfi, A. Odour classification system for continuous monitoring applications. Sens. Actuator B Chem. 2009, 139, 265-273. [CrossRef] open in new tab
  13. Ilgen, E.; Karfich, N.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.E.; Dunemann, L.; Begerow, J. Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos. Environ. 2001, 35, 1235-1252. [CrossRef] open in new tab
  14. Chao, C.Y.H. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 2001, 36, 999-1007. [CrossRef] open in new tab
  15. Righi, E.; Aggazzotti, G.; Fantuzzi, G.; Ciccarese, V.; Predieri, G. Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci. Total Environ. 2002, 286, 41-50. open in new tab
  16. Chan, A.T. Indoor-outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmos. Environ. 2002, 36, 1543-1551. [CrossRef] open in new tab
  17. Kot-Wasik, A.; Zabiegała, B.; Urbanowicz, M.; Dominiak, E.; Wasik, A.; Namieśnik, J. Advances in passive sampling in environmental studies. Anal. Chim. Acta 2007, 602, 141-163. [CrossRef] [PubMed] open in new tab
  18. Partyka, M.; Zabiegała, B.; Namieśnik, J.; Przyjazny, A. Application of Passive Samplers in Monitoring of Organic Constituents of Air. Crit. Rev. Anal. Chem. 2007, 37, 51-77. [CrossRef] open in new tab
  19. Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153-169. [CrossRef] open in new tab
  20. Zabiegała, B.; Partyka, M.; Zygmunt, B.; Namieśnik, J. Determination of volatile organic compounds in indoor air in the Gdansk area using permeation passive samplers. Indoor Built Environ. 2009, 18, 492-504. [CrossRef] open in new tab
  21. World Health Organization Publications. Air Quality Guidelines for Europe; open in new tab
  22. European Series No. 91; World Health Organization: Copenhagen, Denmark, 2000. open in new tab
  23. Stetter, J.R.; Li, J. Amperometric gas sensors-A review. Chem. Rev. 2008, 108, 352-366. [CrossRef] [PubMed] open in new tab
  24. Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705-725. [CrossRef] [PubMed] open in new tab
  25. Gebicki, J. Application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. Trac Trends Anal. Chem. 2016, 77, 1-13. [CrossRef] open in new tab
  26. Drager Technik fur das Leben, 2015. Available online: www.draeger.com (accessed on 15 August 2015). open in new tab
  27. Gebicki, J.; Dymerski, T. Application of Chemical Sensors and Sensor Matrixes to Air Quality Evaluation. In The Quality of Air, 1st ed.; de la Guardia, M., Armenta, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 267-294. open in new tab
  28. Cao, Z.; Buttner, W.J.; Stetter, J.R. The properties and applications of amperometric gas sensors. Electroanalysis 1992, 4, 253-266. [CrossRef] open in new tab
  29. Bontempelli, G.; Comisso, N.; Toniolo, R.; Schiavon, G. Electroanalytical sensors for nonconducting media based on electrodes supported on perfluorinated ion-exchange membranes. Electroanalysis 1997, 9, 433-443. [CrossRef] open in new tab
  30. Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuator B Chem. 2002, 84, 258-264. [CrossRef] open in new tab
  31. Sakai, G.; Baik, N.S.; Miura, N.; Yamazoe, N. Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H 2 response on film thickness. Sens. Actuator B Chem. 2001, 77, 116-121. [CrossRef] open in new tab
  32. Galdikas, A.; Mironas, A.; Setkus, A. Copper-doping level effect on sensitivity and selectivity of tin oxide thin-film gas sensor. Sens. Actuator B Chem. 1995, 26, 29-32. [CrossRef] open in new tab
  33. Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia 2003, 7, 63-75. [CrossRef] open in new tab
  34. Emelin, E.V.; Nikolaev, I.N. Sensitivity of MOS sensors to hydrogen, hydrogen sulfide, and nitrogen dioxide in different gas atmospheres. Meas. Tech. 2006, 49, 524-528. [CrossRef] open in new tab
  35. Berna, A. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis. Sensors 2010, 10, 3882-3910. [CrossRef] [PubMed] open in new tab
  36. Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181-198. [CrossRef] open in new tab
  37. Munoz, R.; Sivret, E.C.; Parcsi, G.; Lebrero, R.; Wang, X.; Suffet, I.H.; Stuetz, R.M. Monitoring techniques for odour abatement assessment. Water Res. 2010, 44, 5129-5149. [CrossRef] [PubMed] open in new tab
  38. Brzózka, Z.; Wróblewski, W. Sensory Chemiczne;
  39. Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 1998.
  40. Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099-5148. [PubMed] open in new tab
  41. Stetter, J.R.; Penrose, W.R. Understanding Chemical Sensors and Chemical Sensor Arrays (Electronic Noses): Past, Present, and Future. Sens. Update 2002, 10, 189-229. [CrossRef] open in new tab
  42. Wilson, A.D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453-463. [CrossRef] open in new tab
  43. Boeker, P. On "Electronic Nose" methodology. Sens. Actuator B Chem. 2014, 204, 2-17. [CrossRef] open in new tab
  44. Nicolas, J.; Romain, A.C. Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors. Sens. Actuator B Chem. 2004, 99, 384-392. [CrossRef] open in new tab
  45. Sohn, J.H.; Hudson, N.; Gallagher, E.; Dunlop, M.; Zeller, L.; Atzeni, M. Implementation of an electronic nose for continuous odour monitoring in a poultry shed. Sens. Actuator B Chem. 2008, 133, 60-69. [CrossRef] open in new tab
  46. Dentoni, L.; Capelli, L.; Sironi, S.; Rosso, R.; Zanetti, S.; Della Torre, M. Development of an Electronic Nose for Environmental Odour Monitoring. Sensors 2012, 12, 14363-14381. [CrossRef] [PubMed] open in new tab
  47. Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100, 2595-2626. [CrossRef] [PubMed] open in new tab
  48. Munoz, B.C.; Steinthal, G.; Sunshine, S. Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 1999, 19, 300-305. [CrossRef] open in new tab
  49. Briglin, S.M.; Freund, M.S.; Tokumaru, P.; Lewis, N.S. Exploitation of spatiotemporal information and geometric optimization of signal/noise performance using arrays of carbon black-polymer composite vapor detectors. Sens. Actuator B Chem. 2002, 82, 54-74. [CrossRef] open in new tab
  50. Partridge, A.C.; Jansen, M.L.; Arnold, W.M. Conducting polymer-based sensors. Mater. Sci. Eng. C 2000, 12, 37-42. [CrossRef] open in new tab
  51. Bai, H.; Li, C.; Chen, F.; Shi, G. Aligned three-dimensional microstructures of conducting polymer composites. Polymer 2007, 48, 5259-5267. [CrossRef] open in new tab
  52. Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267-307. open in new tab
  53. Gebicki, J.; Kloskowski, A.; Chrzanowski, W.; Stepnowski, P.; Namiesnik, J. Application of Ionic Liquids in Amperometric Gas Sensors. Crit. Rev. Anal. Chem. 2016, 46, 122-138. [CrossRef] [PubMed] open in new tab
  54. Gebicki, J. Application of ionic liquids in electronic nose instruments. In Analytical Applications of Ionic Liquids; open in new tab
  55. Koel, M., Ed.; World Scientific Publishing Europe Ltd.: London, UK, 2016; pp. 339-360. open in new tab
  56. English, J.T.; Bavana, A.D.; Freund, M.S. Biogenic amine vapour detection using poly (anilineboronic acid) films. Sens. Actuator B Chem. 2006, 115, 666-671. [CrossRef] open in new tab
  57. Li, B.; Santhanam, S.; Schultz, L.; Jeffries-EL, M.; Iovu, M.C.; Sauve, G.; Cooper, J.; Zhang, R.; Revelli, J.C.; Kusne, A.G.; et al. Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sens. Actuator B Chem. 2007, 123, 651-660. [CrossRef] open in new tab
  58. Wang, F.; Yang, Y.; Swager, T.M. Molecular recognition for high selectivity in carbon nanotube/ polythiophenechemiresistors. Angew. Chem. 2008, 120, 8522-8524. [CrossRef] open in new tab
  59. Lipatov, A.; Varezhnikov, A.; Wilson, P.; Sysoev, V.; Kolmakov, A.; Sinitskii, A. Highly selective gas sensor arrays based on thermally reduced grapheneoxide. Nanoscale 2013, 5, 5426-5434. [CrossRef] [PubMed] open in new tab
  60. Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO 2 nanoparticles under humid atmosphere. Sens. Actuator B Chem. 2017, 244, 466-474. [CrossRef] open in new tab
  61. Tasaltin, C.; Basarir, F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuator B Chem. 2014, 194, 173-179. [CrossRef] open in new tab
  62. Castro, M.; Kumar, B.; Feller, J.F.; Haddi, Z.; Amari, A.; Bouchikhi, B. Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens. Actuator B Chem. 2011, 159, 213-219. [CrossRef] open in new tab
  63. Kumar, B.; Castro, M.; Feller, J.F. Poly(lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuator B Chem. 2012, 161, 621-628. [CrossRef] open in new tab
  64. Athawale, A.A.; Bhagwat, S.V.; Katre, P.P. Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens. Actuator B Chem. 2006, 114, 263-267. [CrossRef] open in new tab
  65. Santhanam, K.S.V.; Sangoi, R.; Fuller, L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly (3-methylthiophene). Sens. Actuator B Chem. 2005, 106, 766-771. open in new tab
  66. Sharma, S.; Nirkhe, C.; Prthkar, S.; Athawale, A.A. Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuator B Chem. 2002, 85, 131-136. [CrossRef] open in new tab
  67. Sayago, I.; Fernandez, M.J.; Fontecha, J.L.; Horrilli, M.C.; Vera, C.; Obieta, I.; Bustero, I. Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sens. Actuator B Chem. 2011, 156, 1-5. [CrossRef] open in new tab
  68. Penza, M.; Antolini, F.; Antisari, M.V. Carbon nanotubes as SAW chemical sensors materials. Sens. Actuator B Chem. 2004, 100, 47-59. [CrossRef] open in new tab
  69. Sayago, I.; Fernandez, M.J.; Fontecha, J.L.; Horillo, M.C.; Vera, C.; Obieta, I.; Bustero, I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sens. Actuator B Chem. 2012, 175, 67-72. [CrossRef] open in new tab
  70. Viespe, C.; Grigoriu, C. Surface acoustic wave sensors with carbon nanotubes and SiO 2 /Si nanoparticles based nanocomposites for VOC detection. Sens. Actuator B Chem. 2010, 147, 43-47. [CrossRef] open in new tab
  71. Crawford, M.; Stewart, G.; McGregor, G.; Gilchrist, J.R. Design of a portable optical sensor for methane gas detection. Sens. Actuator B Chem. 2006, 113, 830-836.
  72. Goncalves, V.C.; Balogh, D.T. Optical chemical sensors using polythio-phene derivatives as active layer for detection of volatile organic compounds. Sens. Actuator B Chem. 2012, 162, 307-312. [CrossRef] open in new tab
  73. Elosua, C.; Arregui, F.J.; Zamarreño, C.R.; Bariain, C.; Luquin, A.; Laguna, M.; Mati, I.R. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens. Actuator B Chem. 2012, 173, 523-529. [CrossRef] open in new tab
  74. Nizamidin, P.; Yimit, A.; Abdurrahman, A.; Itoh, K. Formaldehyde gas sensor based on silver-and-yttrium-co doped-lithium iron phosphate thin film optical waveguide. Sens. Actuator B Chem. 2013, 176, 460-466. [CrossRef] open in new tab
  75. Martínez-Hurtado, J.L.; Davidson, C.A.B.; Blyth, J.; Lowe, C.R. Holographic detection of hydrocarbon gases and other volatile organic compounds. Langmuir 2010, 26, 15694-15699. [CrossRef] [PubMed] open in new tab
  76. Wales, D.J.; Parker, R.M.; Quainoo, P.; Cooper, P.A.; Gates, J.C.; Grossel, M.C.; Smith, P.G.R. An integrated optical Bragg grating refractometer for volatile organic compound detection. Sens. Actuator B Chem. 2016, 282, 595-604. [CrossRef] open in new tab
  77. Khot, L.R.; Panigrahi, S.; Lin, D. Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sens. Actuator B Chem. 2011, 153, 1-10. [CrossRef] open in new tab
  78. Si, P.; Mortensen, J.; Komolov, A.; Denborg, J.; Møller, P.J. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta 2007, 597, 223-230. [CrossRef] [PubMed] open in new tab
  79. Rizzo, S.; Sannicolo, F.; Benincori, T.; Schiavon, G.; Zecchin, S.; Zotti, G. Calix[4]arene-functionalized poly-cyclopenta[2,1-b;3,4-b]bithiophenes with good recognition ability and selectivity for small organic molecules for application in QCM-based sensors. J. Mater. Chem. 2004, 14, 1804-1811. [CrossRef] open in new tab
  80. Chang, J.B.; Liu, V.; Subramanian, V.; Sivula, K.; Luscombe, C.; Murphy, A.; Liu, J.; Fréchet, J.M.J. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100, 14506-14507. [CrossRef] open in new tab
  81. Liao, F.; Yin, S.; Toney, M.F.; Subramanian, V. Physical discrimination ofamine vapor mixtures using polythiophene gas sensor arrays. Sens. Actuator B Chem. 2010, 150, 254-263. [CrossRef] open in new tab
  82. Andersson, M.; Bastuck, M.; Huotari, L.; Lloyd Spetz, A.; Lappalainen, J.; Schütze, A.; Puglisi, D. SiC-FET Sensors for Selective and Quantitative Detection of VOCs Down to Ppb Level. Procedia Eng. 2016, 168, 216-220. [CrossRef] open in new tab
  83. Bur, C.; Bastuck, M.; Puglisi, D.; Schütze, A.; Lloyd Spetz, A.; Andersson, M. Discrimination and quantification of volatile organic compounds in the ppb-range with gas sensitive SiC-FETs using multivariate statistics. Sens. Actuator B Chem. 2015, 514, 225-233. [CrossRef] open in new tab
  84. Pandya, H.J.; Chandra, S.; Vyas, A.L. Integration of ZnO nanostructures with MEMS for ethanol sensor. Sens. Actuator B Chem. 2012, 161, 923-928. [CrossRef] open in new tab
  85. Pohle, R.; Weisbrod, E.; Hedler, H. Enhancement of MEMS-based Ga 2 O 3 Gas Sensors by Surface Modifications. Procedia Eng. 2016, 168, 211-215. [CrossRef] open in new tab
  86. Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y.; Ozturk, Z.Z.; Urey, H. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuator B Chem. 2014, 202, 357-364. [CrossRef] open in new tab
  87. Williams, M.L. Monitoring of exposure to air pollution. Sci. Total. Environ. 1995, 168, 169-174. [CrossRef] open in new tab
  88. Strang, C.R.; Levine, S.P.; Herget, W.F. A preliminary evaluation of the Fourier transform infrared (FTIR) spectrometer as a quantitative air monitor for semiconductor manufacturing process emissions. Am. Ind. Hyg. Assoc. J. 1989, 50, 70-77. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 204 times

Recommended for you

Meta Tags