Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates - Publication - Bridge of Knowledge

Search

Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates

Abstract

Accurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning (DL), have been found suitable for this task by capitalizing on their flexibility and generality. Yet, rendering reliable transistor surrogates is hindered by a number of issues such as the need for finding good match between the input data and the network architecture and hyperparameters (number and sizes of layers, activation functions, data pre-processing methods), possible overtraining, etc. This work proposes a novel methodology, referred to as Fully Adaptive Regression Model (FARM), where all network components and processing functions are automatically determined through Tree Parzen Estimator. Our technique is comprehensively validated using three examples of microwave transistors and demonstrated to offer a competitive edge over the state-of-the-art methods in terms of modeling accuracy and handling the aforementioned issues pertinent to standard ANN-based surrogates.

Citations

  • 3 1

    CrossRef

  • 0

    Web of Science

  • 3 4

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 13,
ISSN: 2045-2322
Language:
English
Publication year:
2023
Bibliographic description:
Calik N., Gunes F., Kozieł S., Pietrenko-Dąbrowska A., Belen M., Mahouti P.: Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates// Scientific Reports -Vol. 13, (2023), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-023-28639-4
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags