Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
Abstract
The importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter tuning, multi-objective optimization, or uncertainty quantification. Nevertheless, modeling of electrical characteristics of microwave components is impeded by nonlinearity of their electrical characteristics, the need for covering broad parameter ranges, as well as dimensionality issues. Recently, a two-stage modeling approach has been proposed, which addresses some of these issues by constraining the surrogate model domain to only include high-quality designs, thereby reducing the cardinality of the dataset required to establish an accurate metamodel. In this paper, a novel technique is proposed, which combines the two-stage modeling concept with Multi-head Deep Regression Network (MHDRN) surrogates customized to handle responses of microwave passives over wide ranges of operating frequencies and geometry parameters. Using three microstrip circuits, a superior performance of the proposed modeling framework is demonstrated with respect to multiple state-of-the-art benchmark methods. In particular, the relative RMS error is shown to reach the level of less than three percent for the datasets consisting of just a few hundred samples.
Citations
-
1 4
CrossRef
-
0
Web of Science
-
1 8
Scopus
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
no. 71,
pages 956 - 968,
ISSN: 0018-9480 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Kozieł S., Calik N., Mahouti P., Belen M.: Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains// IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES -Vol. 71,iss. 3 (2023), s.956-968
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/tmtt.2022.3218024
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 88 times
Recommended for you
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
- M. Belen,
- A. Caliskan,
- S. Kozieł
- + 2 authors