Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
Abstrakt
The importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter tuning, multi-objective optimization, or uncertainty quantification. Nevertheless, modeling of electrical characteristics of microwave components is impeded by nonlinearity of their electrical characteristics, the need for covering broad parameter ranges, as well as dimensionality issues. Recently, a two-stage modeling approach has been proposed, which addresses some of these issues by constraining the surrogate model domain to only include high-quality designs, thereby reducing the cardinality of the dataset required to establish an accurate metamodel. In this paper, a novel technique is proposed, which combines the two-stage modeling concept with Multi-head Deep Regression Network (MHDRN) surrogates customized to handle responses of microwave passives over wide ranges of operating frequencies and geometry parameters. Using three microstrip circuits, a superior performance of the proposed modeling framework is demonstrated with respect to multiple state-of-the-art benchmark methods. In particular, the relative RMS error is shown to reach the level of less than three percent for the datasets consisting of just a few hundred samples.
Cytowania
-
1 4
CrossRef
-
0
Web of Science
-
1 8
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
nr 71,
strony 956 - 968,
ISSN: 0018-9480 - Język:
- angielski
- Rok wydania:
- 2023
- Opis bibliograficzny:
- Kozieł S., Calik N., Mahouti P., Belen M.: Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains// IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES -Vol. 71,iss. 3 (2023), s.956-968
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tmtt.2022.3218024
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 88 razy
Publikacje, które mogą cię zainteresować
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
- M. Belen,
- A. Caliskan,
- S. Kozieł
- + 2 autorów