Dirac fermions and possible weak antilocalization in LaCuSb2 - Publication - Bridge of Knowledge

Search

Dirac fermions and possible weak antilocalization in LaCuSb2

Abstract

Layered heavy-metal square-lattice compounds have recently emerged as potential Dirac fermion materials due to bonding within those sublattices. We report quantum transport and spectroscopic data on the layered Sb square-lattice material LaCuSb2. Linearly dispersing band crossings, necessary to generate Dirac fermions, are experimentally observed in the electronic band structure observed using angle-resolved photoemission spectroscopy, along with a quasi-two-dimensional Fermi surface. Weak antilocalization that arises from two-dimensional transport is observed in the magnetoresistance, as well as regions of linear dependence, both of which are indicative of topologically nontrivial effects. Measurements of the Shubnikov–de Haas quantum oscillations show low effective mass electrons on the order of 0.065me, further confirming the presence of Dirac fermions in this material.

Citations

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Authors (10)

Cite as

Full text

download paper
downloaded 122 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APL Materials no. 7, pages 1 - 7,
ISSN: 2166-532X
Language:
English
Publication year:
2019
Bibliographic description:
Chamorro J., Topp A., Fang Y., Winiarski M., Ast C., Krivenkov M., Varykhalov A., Ramshaw B., Schoop L., Mcqueen T.: Dirac fermions and possible weak antilocalization in LaCuSb2// APL Materials -Vol. 7,iss. 12 (2019), s.1-7
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5124685
Bibliography: test
  1. C. L. Kane and E. J. Mele, "Z(2) topological order and the quantum spin Hall effect," Phys. Rev. Lett. 95, 146802 (2005). open in new tab
  2. C. L. Kane and E. J. Mele, "Quantum spin Hall effect in graphene," Phys. Rev. open in new tab
  3. Lett. 95, 226801 (2005). open in new tab
  4. M. Z. Hasan and C. L. Kane, "Colloquium: Topological insulators," Rev. Mod. Phys. 82, 3045-3067 (2010). open in new tab
  5. H. J. Zhang et al., "Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface," Nat. Phys. 5, 438-442 (2009). open in new tab
  6. L. Fu, C. L. Kane, and E. J. Mele, "Topological insulators in three dimensions," Phys. Rev. Lett. 98, 106803 (2007). open in new tab
  7. Z. K. Liu et al., "Discovery of a three-dimensional topological Dirac semimetal Na 3 Bi," Science 343, 864-867 (2014). open in new tab
  8. T. Liang et al., "Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd 3 As 2 ," Nat. Mater. 14, 280-284 (2015). open in new tab
  9. B. Q. Lv et al., "Experimental discovery of Weyl semimetal TaAs," Phys. Rev. X 5, 031013 (2015). open in new tab
  10. C. Fang, H. M. Weng, X. Dai, and Z. Fang, "Topological nodal line semimetals," Chin. Phys. B 25, 117106 (2016). open in new tab
  11. L. M. Schoop, F. Pielnhofer, and B. V. Lotsch, "Chemical principles of topolog- ical semimetals," Chem. Mater. 30, 3155-3176 (2018). open in new tab
  12. H. Li et al., "Negative magnetoresistance in Dirac semimetal Cd 3 As 2 ," Nat. open in new tab
  13. Commun. 7, 10301 (2016). open in new tab
  14. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature 438, 201-204 (2005). open in new tab
  15. M. Neupane et al., "Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd 3 As 2 ," Nat. Commun. 5, 3786 (2014). open in new tab
  16. K. I. Bolotin et al., "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008). open in new tab
  17. K. S. Novoselov et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature 438, 197-200 (2005). open in new tab
  18. J. B. He et al., "Quasi-two-dimensional massless Dirac fermions in CaMnSb 2 ," Phys. Rev. B 95, 045128 (2017). open in new tab
  19. Y. Feng et al., "Strong anisotropy of Dirac cones in SrMnBi 2 and CaMnBi 2 revealed by angle-resolved photoemission spectroscopy," Sci. Rep. 4, 5385 (2014). open in new tab
  20. A. M. Zhang et al., "Interplay of Dirac electrons and magnetism in CaMnBi 2 and SrMnBi 2 ," Nat. Commun. 7, 13833 (2016). open in new tab
  21. J. Y. Liu et al., "A magnetic topological semimetal Sr 1−y Mn 1−z Sb 2 (y, z < 0.1)," Nat. Mater. 16, 905 (2017). open in new tab
  22. J. Y. Liu et al., "Nearly massless Dirac fermions hosted by Sb square net in BaMnSb 2 ," Sci. Rep. 6, 30525 (2016). open in new tab
  23. S. L. Huang, J. Kim, W. A. Shelton, E. W. Plummer, and R. Y. Jin, "Nontrivial Berry phase in magnetic BaMnSb 2 semimetal," Proc. Natl. Acad. Sci. U. S. A. 114, 6256-6261 (2017). open in new tab
  24. H. Masuda et al., "Quantum Hall effect in a bulk antiferromagnet EuMnBi 2 with magnetically confined two-dimensional Dirac fermions," Sci. Adv. 2, e1501117 (2016). open in new tab
  25. Y. Y. Wang, S. Xu, L. L. Sun, and T. L. Xia, "Quantum oscillations and coherent interlayer transport in a new topological Dirac semimetal candidate YbMnSb 2 ," Phys. Rev. Mater. 2, 021201 (2018). open in new tab
  26. J. Y. Liu et al., "Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi 2 ," Nat. Commun. 8, 646 (2017). open in new tab
  27. K. F. Wang, D. Graf, and C. Petrovic, "Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi 2 ," Phys. Rev. B 87, 235101 (2013). open in new tab
  28. K. F. Wang and C. Petrovic, "Multiband effects and possible Dirac states in LaAgSb 2 ," Phys. Rev. B 86, 155213 (2012). open in new tab
  29. X. Shi et al., "Observation of Dirac-like band dispersion in LaAgSb 2 ," Phys. Rev. B 93, 081105 (2016). open in new tab
  30. X. X. Yang et al., "RCu 1+x Sb 2 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe 2 Ge 2 -type structure," Mater. Sci. Forum 475-479, 861-864 (2005). open in new tab
  31. W. Tremel and R. Hoffmann, "Square nets of main group elements in solid-state materials," J. Am. Chem. Soc. 109, 124-140 (1987). open in new tab
  32. S. Klemenz, S. Lei, and L. M. Schoop, "Topological semimetals in square-net materials," Annu. Rev. Mater. Res. 49(1), 185-206 (2019). open in new tab
  33. L. M. Schoop et al., "Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS," Nat. Commun. 7, 11696 (2016). open in new tab
  34. A. Topp et al., "Non-symmorphic band degeneracy at the fermi level in ZrSiTe," New J. Phys. 18, 125014 (2016). open in new tab
  35. O. Sologub, K. Hiebl, P. Rogl, H. Noel, and O. Bodak, "On the crystal-structure and magnetic-properties of the ternary rare-earth compounds RETSb 2 with Re-equivalent-to-rare earth and T-equivalent-to-Ni, Pd, Cu and Au," J. Alloys Compd. 210, 153-157 (1994). open in new tab
  36. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, "Effects of electron- electron collisions with small energy transfers on quantum localization," J. Alloys Compd. 15, 7367-7386 (1982). open in new tab
  37. R. K. Gopal, S. Singh, R. Chandra, and C. Mitra, "Weak-antilocalization and sur- face dominated transport in topological insulator Bi 2 Se 2 Te," AIP Adv. 5, 047111 (2015). open in new tab
  38. L. H. Bao et al., "Weak anti-localization and quantum oscillations of surface states in topological insulator Bi 2 Se 2 Te," Sci. Rep. 2, 726 (2012). open in new tab
  39. Y. S. Kim et al., "Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi 2 Se 3 ," Phys. Rev. B 84, 073109 (2011). open in new tab
  40. E. M. Lifshits and A. M. Kosevich, "Theory of the Shubnikov-Dehaas effect," J. Phys. Chem. Solids 4, 1-10 (1958). open in new tab
  41. APL Mater. 7, 121108 (2019); doi: 10.1063/1.5124685 7, 121108-6 ARTICLE scitation.org/journal/apm open in new tab
  42. K. V. Lakshmi, L. Menon, A. K. Nigam, A. Das, and S. K. Malik, "Magneto- resistance studies on RTSb 2 compounds (R = La, Ce and T = Ni, Cu)," Physica B 223-24, 289-291 (1996). open in new tab
  43. N. V. Gamayunova et al., "Electron-phonon interaction in ternary rare-earth copper antimonides LaCuSb 2 and La(Cu 0.8 Ag 0.2 )Sb 2 probed by Yanson point- contact spectroscopy," in 2017 IEEE 7th International Conference Nanomaterials: Application and Properties (NAP) (IEEE, 2017). open in new tab
  44. P. Ruszala, M. J. Winiarski, and M. Samsel-Czekala, "Dirac-like band struc- ture of LaTESb 2 (TE = Ni, Cu, and Pd) superconductors by DFT calculations," Comput. Mater. Sci. 154, 106-110 (2018). open in new tab
  45. P. C. Canfield and Z. Fisk, "Growth of single-crystals from metallic fluxes," Philos. Mag. B 65, 1117-1123 (1992). open in new tab
  46. A. A. Mostofi et al., "Wannier90: A tool for obtaining maximally-localised Wannier functions," Comput. Phys. Commun. 178, 685-699 (2008). open in new tab
  47. APL Mater. 7, 121108 (2019); doi: 10.1063/1.5124685 7, 121108-7 open in new tab
Verified by:
Gdańsk University of Technology

seen 92 times

Recommended for you

Meta Tags