Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20 - Publication - Bridge of Knowledge

Search

Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20

Abstract

We report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported, with an enhanced influence of quantum oscillations. A crossover between these two antagonistic entities, previously observed only in genuine low-dimensional materials and devices, is shown to occur in a bulk crystal due to its hidden 2D nature.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (8)

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
License
Copyright (2020 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICAL REVIEW B no. 101, pages 1 - 6,
ISSN: 2469-9950
Language:
English
Publication year:
2020
Bibliographic description:
Kolincio K., Pérez O., Canadell E., Alemany P., Duverger-Nédellec E., Minelli A., Bosak A., Pautrat A.: Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20// PHYSICAL REVIEW B -Vol. 101,iss. 16 (2020), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1103/physrevb.101.161117
Bibliography: test
  1. between weak localization and quantum os- cillations conditions which motivated our analysis. Fi- nancial support by the ANR Projects: ANR-18-CE92- 0014 and ANR-11-BS04-0004 is gratefully acknowledged. Work in Spain was supported by MICIU (PGC2018- 096955-B-C44 and PGC2018-093863-B-C22), MINECO through the Severo Ochoa (SEV-2015-0496) and Maria de Maeztu (MDM-2017-0767) Programs and the Gener- alitat de Catalunya (2017SGR1506 and 2017SGR1289). open in new tab
  2. E.Duverger-Nédellec was supported by the project NanoCent-Nanomaterials center for advanced applica- tions, project no. CZ.02.1.01/0.0/0.0/15 003/0000485, financed by the ERDF. * kamkolin@pg.edu.pl
  3. Y. A. Kharkov and O. P. Sushkov, Scientific Reports 6, 34551 EP (2016). open in new tab
  4. O. Cyr-Choinière, S. Badoux, G. Grissonnanche, B. Mi- chon, S. A. A. Afshar, S. Fortier, D. LeBoeuf, D. Graf, J. Day, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron- Leyraud, and L. Taillefer, Phys. Rev. X 7, 031042 (2017). open in new tab
  5. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, Journal of Applied Physics 105, 113713 (2009). open in new tab
  6. J. Mao, Z. Liu, and Z. Ren, Npj Quantum Materials 1, 16028 EP (2016). open in new tab
  7. K. K. Kolincio, R. Daou, O. Pérez, L. Guérin, P. Fertey, and A. Pautrat, Phys. Rev. B 94, 241118 (2016). open in new tab
  8. S. Molina-Valdovinos, J. Martínez-Rivera, N. Moreno- Cabrera, and I. Rodríguez-Vargas, Physica E: Low- dimensional Systems and Nanostructures 101, 188 (2018). open in new tab
  9. P. Monceau, Advances in Physics 61, 325 (2012). open in new tab
  10. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988). open in new tab
  11. S. Yasuzuka, Y. Okajima, S. Tanda, K. Yamaya, N. Takeshita, and N. Môri, Phys. Rev. B 60, 4406 (1999). open in new tab
  12. C. Schlenker, J. Dumas, C. Escribe-filippini, H. Guyot, J. Marcus, and G. Fourcaudot, Philosophical Magazine Part B 52, 643 (1985). open in new tab
  13. T. A. Sedrakyan and M. E. Raikh, Physical Review Let- ters 100, 106806 (2008). open in new tab
  14. L. Wang, M. Yin, A. Khan, S. Muhtadi, F. Asif, E. S. Choi, and T. Datta, Phys. Rev. Applied 9, 024006 (2018). open in new tab
  15. V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, R. Martel, and T. Szkopek, Na- ture Communications 6, 7702 EP (2015). open in new tab
  16. F. Sarcan, S. Mutlu, E. Cokduygulular, O. Donmez, A. Erol, J. Puustinen, and M. Guina, Semiconductor Science and Technology 33, 064003 (2018). open in new tab
  17. W. A. d. Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. First, R. Haddon, B. Piot, C. Faugeras, M. Potemski, and J.-S. Moon, Journal of Physics D: Applied Physics 43, 374007 (2010).
  18. B. , D. Kazazis, W. Desrat, A. Michon, M. Portail, and B. Jouault, Phys. Rev. B 90, 035423 (2014).
  19. P. Roussel, O. Pérez, and P. Labbé, Acta Crystallograph- ica Section B 57, 603 (2001). open in new tab
  20. P. Foury-Leylekian and J.-P. Pouget, Solid State Sciences 4, 387 (2002). open in new tab
  21. P. Roussel, P. Labbé, H. Leligny, D. Groult, P. Foury- Leylekian, and J. P. Pouget, Phys. Rev. B 62, 176 (2000). open in new tab
  22. B. Domengés, M. Hervieu, B. Raveau, and M. O'Keeffe, Journal of Solid State Chemistry 72, 155 (1988). open in new tab
  23. E. Canadell and M.-H. Whangbo, Phys. Rev. B 43, 1894 (1991). open in new tab
  24. K. Kolincio, O. Pérez, S. Hébert, P. Fertey, and A. Pau- trat, Phys. Rev. B 93, 235126 (2016). open in new tab
  25. A. Girard, T. Nguyen-Thanh, S. M. Souliou, M. Stekiel, W. Morgenroth, L. Paolasini, A. Minelli, D. Gambetti, B. Winkler, and A. Bosak, Journal of Synchrotron Ra- diation 26, 272 (2019). open in new tab
  26. P. Roussel, A. Masset, B. Domengés, A. Maignan, D. Groult, and P. Labbé, Journal of Solid State Chem- istry 139, 362 (1998). open in new tab
  27. "See supplemental material at [url will be inserted by publisher] for the details of strucural analysis and the computational methods. the supplementary material con- tains references [23] and [50]-[59].". open in new tab
  28. E. Wang, M. Greenblatt, I. E.-I. Rachidi, E. Canadell, and M.-H. Whangbo, Journal of Solid State Chemistry 81, 173 (1989). open in new tab
  29. G. Bergmann, Physics Reports 107, 1 (1984). open in new tab
  30. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 6 287 (1985). open in new tab
  31. J. K. Moyle, J. T. Cheung, and N. P. Ong, Physical Review B 35, 5639 (1987). open in new tab
  32. H. L. Stormer, J. P. Eisenstein, A. C. Gossard, W. Wieg- mann, and K. Baldwin, Physical Review Letters 56, 85 (1986). open in new tab
  33. W. Szott, C. Jedrzejek, and W. P. Kirk, Physical Review Letters 63, 1980 (1989). open in new tab
  34. W. Szott, C. Jedrzejek, and W. P. Kirk, Physical Review B 40, 1790 (1989). open in new tab
  35. W. Szott, C. Jedrzejek, and W. P. Kirk, Physical Review B 45, 3565 (1992). open in new tab
  36. B. Domengés, F. Studer, and B. Raveau, Materials Re- search Bulletin 18, 669 (1983). open in new tab
  37. J. S. Meyer, A. Altland, and B. L. Altshuler, Phys. Rev. Lett. 89, 206601 (2002). open in new tab
  38. S. Hikami, A. I. Larkin, and Y. Nagaoka, Progress of Theoretical Physics 63, 707 (1980). open in new tab
  39. M. Lang, L. He, X. Kou, P. Upadhyaya, Y. Fan, H. Chu, Y. Jiang, J. H. Bardarson, W. Jiang, E. S. Choi, Y. Wang, N.-C. Yeh, J. Moore, and K. L. Wang, Nano Letters 13, 48 (2013), pMID: 23198980. open in new tab
  40. M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L.-l. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. Lett. 108, 036805 (2012). open in new tab
  41. P. Sheng, Y. Sakuraba, Y.-C. Lau, S. Takahashi, S. Mi- tani, and M. Hayashi, Science Advances 3 (2017), 10.1126/sciadv.1701503. open in new tab
  42. E. J. McCormick, M. J. Newburger, Y. K. Luo, K. M. McCreary, S. Singh, I. B. Martin, E. J. Cichewicz, B. T. Jonker, and R. K. Kawakami, 2D Materials 5, 011010 (2017). open in new tab
  43. S. Thomas, D. J. Kim, S. B. Chung, T. Grant, Z. Fisk, and J. Xia, Phys. Rev. B 94, 205114 (2016). open in new tab
  44. I. Lifshitz and A. Kosevich, Sov. Phys. JETP 2, 636 (1956). open in new tab
  45. D. Shoenberg, Magnetic Oscillations in Metals, Cam- bridge Monographs on Physics (Cambridge University Press, 1984). open in new tab
  46. Ottolenghi, Alberto and Pouget, Jean-Paul, J. Phys. I France 6, 1059 (1996). open in new tab
  47. G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, B. N. Zvonkov, E. A. Uskova, and A. A. Birukov, Phys. Rev. B 65, 235322 (2002). open in new tab
  48. Y. A. Pusep, M. B. Ribeiro, H. Arakaki, C. A. de Souza, P. A. Zanello, S. Malzer, and G. H. Döhler, Journal of Physics: Condensed Matter 16, 2447 (2004). open in new tab
  49. A. Pippard, Magnetoresistance in Metals, Cambridge Studies in Low Temperature Physics (Cambridge Uni- versity Press, 2009).
  50. J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan, and H. Peng, Nature Nanotechnology 12, 530 EP (2017). open in new tab
  51. N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J. Yang, J. Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, T. Taniguchi, M. Bockrath, Y. Barlas, R. K. Lake, and C. N. Lau, 2D Materials 2, 011001 (2014). open in new tab
  52. Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Y. Hwang, Nature 462, 487 EP (2009). open in new tab
  53. L. Li, G. J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X. H. Chen, and Y. Zhang, Nature Nanotechnology 10, 608 EP (2015). open in new tab
  54. D. E. Soule, J. W. McClure, and L. B. Smith, Phys. Rev. 134, A453 (1964). open in new tab
  55. R. N. Bhargava, Phys. Rev. 156, 785 (1967). open in new tab
  56. K. Behnia, L. Balicas, and Y. Kopelevich, Science 317, 1729 (2007). open in new tab
  57. V.Édel'man, Advances in Physics 25, 555 (1976). open in new tab
  58. V. Petrícek, M. Dusek, and L. Palatinus, 229, 345 (2014), 5.
  59. L. Palatinus and G. Chapuis, Journal of Applied Crys- tallography 40, 786 (2007). open in new tab
  60. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). open in new tab
  61. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). open in new tab
  62. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). open in new tab
  63. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Jun- quera, P. Ordejón, and D. Sánchez-Portal, Journal of Physics: Condensed Matter 14, 2745 (2002). open in new tab
  64. E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, Journal of Physics: Condensed Matter 20, 064208 (2008). open in new tab
  65. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). open in new tab
  66. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). open in new tab
  67. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler, Physica Status Solidi (B) 215, 809.
  68. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). open in new tab
  69. R. Poloni, J.Íñiguez, A. García, and E. Canadell, Jour- nal of Physics: Condensed Matter 22, 415401 (2010). open in new tab
Verified by:
Gdańsk University of Technology

seen 82 times

Recommended for you

Meta Tags