Direct modulation for conventional matrix converters using analytical signals and barycentric coordinates - Publication - Bridge of Knowledge

Search

Direct modulation for conventional matrix converters using analytical signals and barycentric coordinates

Abstract

This paper proposes the generalized direct modulation for Conventional Matrix Converters (CMC) using the concept of analytical signals and barycentric coordinates. The paper proposes a novel approach to the Pulse Width Modulation (PWM) duty cycle computing, which allows faster prototyping of direct control algorithms. The explanation of the new idea using analytical considerations demonstrating the principles of direct voltage synthesis has been presented in the article. The study concerns mainly the CMC3x3 but solutions for 3xn, 5x5, and 5x3 topologies have also been discussed. The transformation of instantaneous input voltages to analytic signals great permits for simple presenting of real input voltage conditions such as waveform type, asymmetry or other deformation like higher-order harmonics. The proposed interpolation methods allow for determining the values of PWM duty cycles using simple formulas based on the determinants of the 2nd-degree matrices. Therefore, the proposed method, which based on the barycentric coordinates, frees an algorithm from trigonometry and angles.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 131 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 22592 - 22616,
ISSN: 2169-3536
Language:
English
Publication year:
2020
Bibliographic description:
Szczepankowski P., Bajdecki T., Strzelecki R.: Direct modulation for conventional matrix converters using analytical signals and barycentric coordinates// IEEE Access -Vol. 8, (2020), s.22592-22616
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2020.2969981
Bibliography: test
  1. J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, ''A review of control and modulation methods for matrix converters,'' IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 58-70, Jan. 2012. open in new tab
  2. L. Helle, K. Larsen, A. Jorgensen, S. Munk-Nielsen, and F. Blaabjerg, ''Evaluation of modulation schemes for three-phase to three-phase matrix converters,'' IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 158-171, Feb. 2004. open in new tab
  3. T. Friedli and J. Kolar, ''Milestones in matrix converter research,'' IEEJ J. Ind. Appl., vol. 1, no. 1, pp. 2-14, Jul. 2012. open in new tab
  4. S. Mori, M. Aketa, T. Sakaguchi, H. Asahara, T. Nakamura, and T. Kimoto, ''Suppression of punch-through current in 3 kV 4H-SiC reverse-blocking MOSFET by using highly doped drift layer,'' IEEE J. Electron Devices Soc., vol. 6, no. 1, pp. 449-453, Mar. 2018. open in new tab
  5. J. Luo, X.-P. Zhang, and Y. Xue, ''Small signal model of modular multi- level matrix converter for fractional frequency transmission system,'' IEEE Access, vol. 7, pp. 110187-110196, 2019. open in new tab
  6. S. Tammaruckwattana, C. Yue, Y. Ikeda, and K. Ohyama, ''Comparison of switching losses of matrix converters for commutation methods,'' in Proc. 16th Eur. Conf. Power Electron. Appl., Aug. 2014, pp. 1-10. open in new tab
  7. Y. Guo, Y. Guo, W. Deng, J. Zhu, and F. Blaabjerg, ''An improved 4-step commutation method application for matrix converter,'' in Proc. 17th Int. Conf. Electr. Mach. Syst. (ICEMS), Oct. 2014, pp. 3590-3593. open in new tab
  8. O. Simon, J. Mahlein, M. Muenzer, and M. Bruckmarm, ''Modern solu- tions for industrial matrix-converter applications,'' IEEE Trans. Ind. Elec- tron., vol. 49, no. 2, pp. 401-406, Apr. 2002. open in new tab
  9. A. Hassan, Y. Savaria, and M. Sawan, ''GaN integration technology, an ideal candidate for high-temperature applications: A review,'' IEEE Access, vol. 6, pp. 78790-78802, 2018. open in new tab
  10. M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, ''GaN on Si technologies for power switching devices,'' IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3053-3059, Oct. 2013. open in new tab
  11. D. Lan, P. Das, and S. K. Sahoo, ''A high-frequency link matrix rectifier with a pure capacitive output filter in a discontinuous conduction mode,'' IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 4-15, Jan. 2020. open in new tab
  12. R. J. Kaplar, M. J. Marinella, S. DasGupta, M. A. Smith, S. Atcitty, M. Sun, and T. Palacios, ''Characterization and reliability of SiC-and gan- based power transistors for renewable energy applications,'' in Proc. IEEE Energytech, May 2012, pp. 1-6. open in new tab
  13. J. Benzaquen, M. B. Shadmand, and B. Mirafzal, ''Ultrafast rectifier for variable-frequency applications,'' IEEE Access, vol. 7, pp. 9903-9911, 2019. open in new tab
  14. Q. Wu, M. Wang, W. Zhou, X. Wang, G. Liu, and C. You, ''Analytical switching model of a 1200 V SiC MOSFET in a high-frequency series resonant pulsed power converter for plasma generation,'' IEEE Access, vol. 7, pp. 99622-99632, 2019. open in new tab
  15. P. W. Wheeler, J. C. Clare, M. Apap, D. Lampard, S. J. Pickering, K. J. Bradley, and L. Empringham, ''An integrated 30 kw matrix converter based induction motor drive,'' in Proc. IEEE 36th Power Electron. Spec. Conf., Jun. 2005, pp. 2390-2395. open in new tab
  16. L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, ''Technological issues and industrial application of matrix converters: A review,'' IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4260-4271, Oct. 2013. open in new tab
  17. L. R. Merchan-Villalba, J. M. Lozano-Garcia, J. G. Avina-Cervantes, H. J. Estrada-Garcia, and J. Martinez-Patino, ''Matrix converter based on SVD modulation using a microcontroller as unique controlling device,'' IEEE Access, vol. 7, pp. 164815-164824, 2019. open in new tab
  18. K. Rahman, A. Iqbal, M. A. Al-Hitmi, O. Dordevic, and S. Ahmad, ''Performance analysis of a three-to-five phase dual matrix converter based on space vector pulse width modulation,'' IEEE Access, vol. 7, pp. 12307-12318, 2019. open in new tab
  19. S. M. Ahmed, A. Iqbal, and H. Abu-Rub, ''Generalized duty-ratio-based pulsewidth modulation technique for a three-to-k phase matrix converter,'' IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3925-3937, Sep. 2011. open in new tab
  20. A. Iqbal, H. Abu-Rub, J. Rodriguez, C. A. Rojas, and M. Saleh, ''Simple carrier-based PWM technique for a three-to-nine-phase direct AC-AC converter,'' IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5014-5023, Nov. 2011. open in new tab
  21. S. M. Ahmed, Z. Salam, and H. Abu-Rub, ''An improved space vec- tor modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors,'' IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3327-3337, Jun. 2015. open in new tab
  22. X. Wang, H. Lin, H. She, and B. Feng, ''A research on space vector modulation strategy for matrix converter under abnormal input-voltage conditions,'' IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 93-104, Jan. 2012. open in new tab
  23. W. Xiong, Y. Sun, J. Lin, M. Su, H. Dan, M. Rivera, and J. M. Guerrero, ''A cost-effective and low-complexity predictive control for matrix con- verters under unbalanced grid voltage conditions,'' IEEE Access, vol. 7, pp. 43895-43905, 2019. open in new tab
  24. Z. Malekjamshidi, M. Jafari, and J. Zhu, ''Analysis and comparison of direct matrix converters controlled by space vector and Venturini mod- ulations,'' in Proc. IEEE 11th Int. Conf. Power Electron. Drive Syst., Jun. 2015, pp. 635-639. open in new tab
  25. A. K. Dey, G. Mohapatra, T. K. Mohapatra, and R. Sharma, ''A modified Venturini PWM scheme for matrix converters,'' in Proc. IEEE Int. Conf. Sustain. Energy Technol. Syst. (ICSETS), Feb. 2019, pp. 013-018. open in new tab
  26. Z. Malekjamshidi, M. Jafari, J. Zhu, and D. Xiao, ''Comparative analysis of input power factor control techniques in matrix converters based on model predictive and space vector control schemes,'' IEEE Access, vol. 7, pp. 139150-139160, 2019. open in new tab
  27. S. Feng, J. Lei, J. Zhao, W. Chen, and F. Deng, ''Improved refer- ence generation of active and reactive power for matrix converter with model predictive control under input disturbances,'' IEEE Access, vol. 7, pp. 97001-97012, 2019. open in new tab
  28. E. Levi, ''Multi-phase machines for variable speed applications,'' IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893-1909, May 2008. open in new tab
  29. E. Levi, R. Bojoi, F. Profumo, H. Toliyat, and S. Williamson, ''Multi-phase induction motor drives-a technology status review,'' IET Electr. Power Appl., vol. 1, no. 4, pp. 489-516, Jul. 2007. open in new tab
  30. O. Abdel-Rahim, H. Funato, H. Abu-Rub, and O. Ellabban, ''Multiphase wind energy generation with direct matrix converter,'' in Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb. 2014, pp. 519-523. open in new tab
  31. D. Casadei, G. Serra, A. Tani, and L. Zarri, ''Matrix converter modulation strategies: A new general approach based on space-vector representation of the switch state,'' IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 370-381, Apr. 2002. open in new tab
  32. H. Hojabri, H. Mokhtari, and L. Chang, ''A generalized technique of modeling, analysis, and control of a matrix converter using SVD,'' IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 949-959, Mar. 2011. open in new tab
  33. M. Ali, A. Iqbal, M. R. Khan, M. Ayyub, and M. A. Anees, ''Generalized theory and analysis of scalar modulation techniques for a m × n matrix converter,'' IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4864-4877, Jun. 2017. open in new tab
  34. A. Reilly, G. Frazer, and B. Boashash, ''Analytic signal generation-tips and traps,'' IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3241-3245, Nov. 1994. open in new tab
  35. L. Marple, ''Computing the discrete-time 'analytic' signal via FFT,'' IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2600-2603, Sep. 1999. open in new tab
  36. L. Asiminoael, F. Blaabjerg, and S. Hansen, ''Computing the discrete-time 'analytic' signal via FFT,'' IEEE Ind. Appl. Mag., vol. 13, no. 4, pp. 22-33, Jul. 2007. open in new tab
  37. P. Szczepankowski, P. Wheeler, and T. Bajdecki, ''Application of analytic signal and smooth interpolation in pulse width modulation for conventional matrix converters,'' IEEE Trans. Ind. Electron., to be published. open in new tab
  38. P. Szczepankowski and J. Nieznanski, ''Application of Barycentric coor- dinates in space vector PWM computations,'' IEEE Access, vol. 7, pp. 91499-91508, 2019. open in new tab
  39. N. S. E. Malsch, ''Recent advanced in the construction of polygonal finite element interpolants,'' Arch. Comput. Methods Eng., vol. 11, pp. 1-38, Sep. 2005.
  40. M. Apap, J. Clare, P. Wheeler, and K. Bradley, ''Analysis and comparison of AC-AC matrix converter control strategies,'' in Proc. IEEE 34th Annu. Conf. Power Electron. Spec., Jun. 2003, pp. 1287-1292. open in new tab
  41. G. Dasgupta, ''Interpolants within convex polygons: Wachspress shape functions,'' J. Aerosp. Eng., vol. 16, no. 1, pp. 1-8, Jan. 2003. open in new tab
  42. G. Todoran and R. Holonec, ''Analysis of the multi-phased system based on the concept of analytic signals,'' in Proc. 4th Int. Conf. Power Eng., Energy Elect. Drives, May 2013, pp. 664-669. open in new tab
  43. C. Rader, ''A simple method for sampling in-phase and quadrature components,'' IEEE Trans. Aerosp. Electron. Syst., vol. AES-20, no. 6, pp. 821-824, Nov. 1984. open in new tab
  44. X. Chen, J. Wang, V. I. Patel, and P. Lazari, ''A nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for elec- tric vehicle applications,'' IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 860-871, Sep. 2016. open in new tab
  45. T. D. Nguyen and H.-H. Lee, ''Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis,'' IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 13-24, Jan. 2016. open in new tab
  46. C. N. El-Khoury, H. Y. Kanaan, I. Mougharbel, and K. Al-Haddad, ''A review of matrix converters applied to PMSG based wind energy conversion systems,'' in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2013, pp. 7784-7789. open in new tab
  47. X. Liu, P. Wang, P. C. Loh, and F. Blaabjerg, ''A three-phase dual-input matrix converter for grid integration of two AC type energy resources,'' IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 20-30, Jan. 2013. open in new tab
  48. R. Pena, R. Cardenas, E. Reyes, J. Clare, and P. Wheeler, ''Control of a dou- bly fed induction generator via an indirect matrix converter with changing DC voltage,'' IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4664-4674, Oct. 2011. open in new tab
  49. A. Garcés and M. Molinas, ''A study of efficiency in a reduced matrix converter for offshore wind farms,'' IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 184-193, Jan. 2012. open in new tab
  50. J. Esch, ''High-power wind energy conversion systems: State-of-the-art and emerging technologies,'' Proc. IEEE, vol. 103, no. 5, pp. 736-739, May 2015. open in new tab
  51. I. Zoric, M. Jones, and E. Levi, ''Arbitrary power sharing among three- phase winding sets of multiphase machines,'' IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1128-1139, Feb. 2018. open in new tab
  52. A. Iqbal, S. Moinuddin, M. R. Khan, S. M. Ahmed, and H. Abu-Rub, ''A novel three-phase to five-phase transformation using a special transformer connection,'' IEEE Trans. Power Del., vol. 25, no. 3, pp. 1637-1644, Jul. 2010. open in new tab
  53. A. S. Abdel-Khalik, A. Elserougi, Z. Shafik, S. Ahmed, and A. Massoud, ''A scott connection-based three-phase to five-phase power transformer,'' in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2013, pp. 2559-2564. open in new tab
  54. A. Munteanu, A. Simion, D. A. Hagianu, L. Livadaru, and D. Bidei, ''Special three-phase to multiple different polyphase systems electric trans- former,'' in Proc. Int. Conf. Expo. Elect. Power Eng. (EPE), Oct. 2014, pp. 345-348. open in new tab
  55. T. J. Sobczyk and D. Borkowski, ''Application of matrix converter for power flow control in a transmission line,'' in Proc. IEEE Lausanne Power Tech, Jul. 2007, pp. 1823-1828. open in new tab
  56. T. J. Sobczyk, T. Sienko, and J. B. Danilewicz, ''Study of asymmetrical regimes in matrix converters for multi-phase high speed generators,'' in Proc. IEEE Russia Power Tech, Jun. 2005, pp. 1-6. open in new tab
  57. PAWEL SZCZEPANKOWSKI (Member, IEEE) received the Ph.D. degree in electrical engineer- ing from the Gdansk University of Technology, Poland, in 2009. He has authored or coauthored more than 30 scientific and technical articles. His research interests include designs, control, diag- nostics, modeling, and simulation of power elec- tronic converters, including multilevel and matrix topologies, and signal processing with the use of advanced DSP and FPGA devices. He is a member of the Research and Development team of LINTE ∧ 2 Laboratory, Gdansk University of Technology. open in new tab
  58. TOMASZ BAJDECKI received the M.S. degree in electrical engineering from the Czestochowa University of Technology, Poland, in 1992, and the Ph.D. degree from the Gdansk University of Technology, in 2003. He is currently a Research Staff Member with the Institute of Power Engi- neering, Gdansk. His main current interest is in the area of control of the high-power converters. His Ph.D. Dissertation was on Control Strategy for the Matrix Converter. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags