Effect of the North Atlantic Thermohaline Circulation on changes in climatic conditions and river flow in Poland - Publication - Bridge of Knowledge

Search

Effect of the North Atlantic Thermohaline Circulation on changes in climatic conditions and river flow in Poland

Abstract

: The purpose of this study is to find connections between the North Atlantic Thermohaline Circulation (NA THC), climate elements, such as cloud cover, precipitation, air temperature, sunshine duration, and relative humidity, and flow of rivers in Poland. The intensity of NA THC was characterized by the DG3L index, which was established to assess changes in the amount of heat transported by NA THC along with the transport of water to the Arctic. The paper explains and discusses the mechanism of impact of the NA THC changeability on the elements of the catchment water balance variability. The positive and negative phases of the DG3L index are strongly correlated with the heat anomalies in the upper layer of the North Atlantic waters. The obtained results show that changes of NA THC have significant impact on weather conditions and selected climate elements in Poland. Statistically significant positive correlations were found between the DG3L index and average annual air temperatures, particularly in April, July, and August, while negative between the DG3L index and the total cloud cover. Consequently, in the years with the positive values of the DG3L index, there are favorable conditions for the strong increase in evaporation and evapotranspiration from the ground surface. This has impact on flow of rivers in Poland, which shows considerable regional differences.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 18 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Water no. 8, pages 1 - 20,
ISSN: 2073-4441
Language:
English
Publication year:
2019
Bibliographic description:
Dariusz W., Andrzej M., Styszyńska A., Sobkowiak L.: Effect of the North Atlantic Thermohaline Circulation on changes in climatic conditions and river flow in Poland// Water -Vol. 8, (2019), s.1-20
DOI:
Digital Object Identifier (open in new tab) 10.3390/w11081622
Bibliography: test
  1. Van Lanen, H.A.J.; Laaha, G.; Kingston, D.G.; Gauster, T.; Ionita, M.; Vidal, J.-P.; Vlnas, R.; Tallaksen, L.M.; Stahl, K.; Hannaford, J.; et al. Hydrology needed to manage droughts: The 2015 European case. Hydrol. Process. 2016, 30, 3097-3104. [CrossRef] open in new tab
  2. Krasowski, W.; Tokarczyk, T. 2015-2016 Hydrological Drought in Poland Compared to Multi-Annual Period. Gospodarka Wodna 2017, 9, 277-284. (In Polish)
  3. Kaznowska, E.; Hejduk, A.; Kempiński, C. Low Flows of the Vistula River in Warsaw in the 21st century (in Polish). Acta Sci. Pol. Form. Circumiectus 2018, 17, 33-44. [CrossRef] open in new tab
  4. Kubiak-Wójcicka, K.; Bąk, B. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess. 2018, 190, 691. [CrossRef] [PubMed] open in new tab
  5. Jokiel, P.; Kożuchowski, K. Changes in selected hydro-climatic characteristics of Poland in the current century. In Dokumentacja Geograficzna; IGiPZ PAN: Warszawa, Poland, 1989; Volume 6, pp. 1-94. (In Polish)
  6. Wrzesiński, D. Tendencies of changes in the flow of Polish rivers in the second half of the 20th century. Bad. Fizjogr. Na. Pol. Zach. 2009, 60, 147-162. (In Polish)
  7. Wrzesiński, D.; Sobkowiak, L. Detection of changes in flow regime of rivers in Poland. J. Hydrol Hydromech. 2018, 66, 55-64. [CrossRef] open in new tab
  8. Piniewski, M.; Marcinkowski, P.; Kundzewicz, Z.W. Trend detection in river flow indices in Poland. Acta Geophys. 2018, 66, 347-360. [CrossRef] open in new tab
  9. Labat, D.; Ababou, R.; Mangin, A. Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: The case of Licq-Atherey karstic system (France). Groundwater 2001, 39, 605-615. [CrossRef] open in new tab
  10. Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631-642. [CrossRef] open in new tab
  11. Lavado Casimiro, W.S.; Labat, D.; Ronchail, J.; Espinoza, J.C.; Guyot, J.L. Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965-2007). Hydrol. Process. 2013, 27, 2944-2957. [CrossRef] open in new tab
  12. Lavado Casimiro, W.S.; Ronchail, J.; Labat, D.; Espinoza, J.C.; Guyot, J.L. Basin-scale analysis of rainfall and runoff in Peru (1969-2004): Pacific, Titicaca and Amazonas drainages. Hydrol. Sci. J. 2012, 57, 625-642. open in new tab
  13. Pociask-Karteczka, J.; Limanówka, D.; Nieckarz, Z. Impact of the North Atlantic Oscillation on hydrological regime in the Polish Carpathians (1951-2000). Folia Geogr. Ser. Geogr. Phys. 2002-2003, 33-34, 89-104. (In Polish)
  14. Styszyńska, A.; Tamulewicz, J. Warta River discharges in Poznań and atmospheric circulation in the North Atlantic region. Quaest. Geogr. 2004, 23, 63-81.
  15. Pociask-Karteczka, J. River Hydrology and the North Atlantic Oscillation: A General Review. AMBIO 2006, 35, 312-314. [CrossRef] [PubMed] open in new tab
  16. Wrzesiński, D. Regional differences in the influence of the North Atlantic Oscillation on seasonal river runoff in Poland. Quaest. Geogr. 2011, 30, 127-136. [CrossRef] open in new tab
  17. Wrzesiński, D.; Paluszkiewicz, R. Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe. Hydrol. Res. 2011, 42, 30-39. [CrossRef] open in new tab
  18. De Serio, F.; Malcangio, D.; Mossa, M. Circulation in a Southern Italy coastal basin: Modelling and field measurements. Cont. Shelf Res. 2007, 27, 779-797. [CrossRef] open in new tab
  19. Pinadi, N.; Lyubartsev, V.; Cardellicchio, N.; Caporale, C.; Ciliberti, S.; Coppini, G.; De Pascalis, F.; Dialti, L.; Federico, I.; Filippone, M.; et al. Marine Rapid Environmental Assessment in the Gulf of Taranto: a multiscale approach. Nat. Hazards Earth Syst. Sci. 2016, 16, 2623-2639. [CrossRef] open in new tab
  20. Federico, I.; Pinardi, N.; Coppini, G.; Oddo, P.; Lecci, R.; Mossa, M. Coastal ocean forecasting with an unstructured grid model in the Southern Adriatic northern Ionian Sea. Nat. Hazards Earth Syst. Sci. 2017, 17, 45-59. [CrossRef] open in new tab
  21. Boero, F.; Foglini, F.; Fraschetti, S.; Goriup, P.; Macpherson, E.; Planes, S.; Soukissian, T.; Mossa, M. The CoCoNet Consortium. CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. SCIRES-IT. 2016, 6, 1-95. [CrossRef] open in new tab
  22. Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077-2080. [CrossRef] open in new tab
  23. Kerr, R.A. A North Atlantic Climate Pacemaker for the Centuries. Science 2000, 288, 1984-1986. [CrossRef] [PubMed] open in new tab
  24. Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, L17706. [CrossRef] open in new tab
  25. Rogers, J.C.; Coleman, J.S.M. Interactions between the Atlantic Multidecadal Oscillation, El Niño/La Niña, and the PNA in winter Mississippi Valley stream flow. Geophys. Res. Lett. 2003, 30, 1518. [CrossRef] open in new tab
  26. Oglesby, R.; Feng, S.; Hu, Q.; Rowe, C. The role of the Atlantic Multidecadal Oscillation on medieval drought in North America: Synthesizing results from proxy data and climate models. Glob. Planet. Chang. 2012, 84-85, 56-65. [CrossRef] open in new tab
  27. Boé, J.; Habets, F. Multi-decadal river flow variations in France. Hydrol. Earth Syst. Sci. 2014, 18, 691-708. [CrossRef] open in new tab
  28. Marsz, A.A.; Styszyńska, A.; Krawczyk, E.W. The long-term fluctuations in annual flows of rivers in Poland and their relationship with the North Atlantic Thermohaline Circulation. Przegląd Geogr. 2016, 88, 295-316. (In Polish) [CrossRef] open in new tab
  29. Gutry-Korycka, M.; Boryczka, J. Long-term changes in water balance elements in Poland and the Baltic Sea basin. Przegląd Geofiz. 1990, 35, 19-32. (In Polish)
  30. Woś, A. Climate of Poland in the Second Half of the 20th Century; Wydawnictwo Naukowe UAM: Poznań, Poland, 2010; pp. 1-489. (In Polish)
  31. Dynowska, I. Regime of river flow Sheet: 32.3. In Atlas of the Republic of Poland;
  32. IG PZ PAN: Warszawa, Poland, 1994; pp. 1-157. (In Polish)
  33. Dynowska, I.; Pociask-Karteczka, J. Water circulation. In Geography of Poland. Natural Environment;
  34. Starkel, L., Ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1999; pp. 343-373. (In Polish)
  35. Wrzesiński, D. River regimes of Poland. In Hydrology of Poland; open in new tab
  36. Jokiel, P., Marszalewski, W., Pociask-Karteczka, J., Eds.; PWN: Warszawa, Poland, 2017; pp. 215-221. (In Polish)
  37. Wrzesiński, D. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophys. 2016, 64, 1825-1839. [CrossRef] open in new tab
  38. Marsz, A.; Styszyńska, A. Oceanic control of the warming processes in the Arctic-A different point of view for the reasons of changes in the Arctic climate. Probl. Klimatol. Polarn. 2009, 19, 7-31. open in new tab
  39. Marsz, A.A. Model of changes in the Arctic sea-ice extent (1979-2013)-Variables steering the 'minimalist' model and their climatic significance(in Polish). Probl. Klimatol. Polarn. 2015, 25, 249-334.
  40. NOAA NCDC Extended Reconstructed Sea Surface Temperature (ERSST) v3b. Available online: https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface- temperature-ersst-v3b (accessed on 13 May 2019). open in new tab
  41. Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). J. Clim. 2008, 21, 2283-2296. [CrossRef] open in new tab
  42. Girs, A.A. Macro-Circulation Method of Long-Term Forecasts; Gidrometeoizdat Publishing House: Leningrad, Russia, 1974; pp. 1-488. (In Russian)
  43. Osuchowska-Klein, B. Catalogue of atmospheric circulation types. In IMGW;
  44. Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 1978; pp. 1-192. (In Polish)
  45. Osuchowska-Klein, B. Catalogue of atmospheric circulation types 1976-1990. In IMGW; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 1991; pp. 1-50. (In Polish)
  46. Sobczyk, M. Statistics; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007; pp. 1-428. (In Polish)
  47. Pohlmann, H.; Sienz, F.; Latif, M. Influence of the Multidecadal Atlantic Meridional Over-turning Circulation Variability on European Climate. J. Clim. 2006, 19, 6062-6067. [CrossRef] open in new tab
  48. Kelly, M.H.; Gore, J.A. Florida river flow patterns and the Atlantic multidecadal oscillation. River Res. Appl. 2008, 24, 598-616. [CrossRef] open in new tab
  49. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 120 times

Recommended for you

Meta Tags