Abstract
A designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends on the intrinsic properties of the particles to be assembled. Here, we present an easy approach for producing polystyrene microparticles with different electrical properties. These particles are used for investigations into electric field-guided particle assembly in the bulk and on surfaces of oil droplets. By sulfonating polystyrene particles, we produce a set of particles with a range of dielectric constants and electrical conductivities, related to the sulfonation reaction time. The paper presents diverse particle behavior driven by electric fields, including particle assembly at different droplet locations, particle chaining, and the formation of ribbon-like structures with anisotropic properties.
Citations
-
1 8
CrossRef
-
0
Web of Science
-
2 1
Scopus
Authors (7)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Materials
no. 10,
pages 1 - 17,
ISSN: 1996-1944 - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Mikkelsen A., Wojciechowski J., Rajnak M., Kurimský J., Khobaib K., Kertmen A., Rozynek Z.: Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres// Materials. -Vol. 10, iss. 4 (2017), s.1-17
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/ma10040329
- Verified by:
- Gdańsk University of Technology
seen 154 times
Recommended for you
Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles
- A. Mikkelsen,
- A. Kertmen,
- K. Khobaib
- + 3 authors
Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime
- K. Zembrzycki,
- S. Pawłowska,
- F. Pierini
- + 1 authors