Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles - Publication - Bridge of Knowledge

Search

Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles

Abstract

Being able to systematically modify the electric properties of nano- and microparticles opens up new possibilities for the bottom-up fabrication of advanced materials such as the fabrication of one-dimensional (1D) colloidal and granular materials. Fabricating 1D structures from individual particles offers plenty of applications ranging from electronic sensors and photovoltaics to artificial flagella for hydrodynamic propulsion. In this work, we demonstrate the assembly of 1D structures composed of individual microparticles with modified electric properties, pulled out of a liquid environment into air. Polystyrene particles were modified by sulfonation for different reaction times and characterized by dielectric spectroscopy and dipolar force measurements. We found that by increasing the sulfonation time, the values of both electrical conductivity and dielectric constant of the particles increase, and that the relaxation frequency of particle electric polarization changes, causing the measured dielectric loss of the particles to shift towards higher frequencies. We attributed these results to water adsorbed at the surface of the particles. With sulfonated polystyrene particles exhibiting a range of electric properties, we showed how the electric properties of individual particles influence the formation of 1D structures. By tuning applied voltage and frequency, we were able to control the formation and dynamics of 1D structures, including chain bending and oscillation.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 41 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 10, pages 1 - 14,
ISSN: 1996-1944
Language:
English
Publication year:
2017
Bibliographic description:
Mikkelsen A., Kertmen A., Khobaib K., Rajnak M., Juraj K., Rozynek Z.: Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles// Materials. -Vol. 10, nr. 10 (2017), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma10101212
Bibliography: test
  1. Dutka, F.; Rozynek, Z.; Napiórkowski, M. Continuous and discontinuous transitions between two types of capillary bridges on a beaded chain pulled out from a liquid. Soft Matter 2017, 13, 4698-4708. [CrossRef] [PubMed] open in new tab
  2. Xu, K.; Qin, L.; Heath, J.R. The crossover from two dimensions to one dimension in granular electronic materials. Nat. Nanotechnol. 2009, 4, 368-372. [CrossRef] [PubMed] open in new tab
  3. Stephenson, C.; Hubler, A. Stability and conductivity of self assembled wires in a transverse electric field. Sci. Rep. 2015, 5, 15044. [CrossRef] [PubMed] open in new tab
  4. Quinten, M.; Leitner, A.; Krenn, J.R.; Aussenegg, F.R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 1998, 23, 1331-1333. [CrossRef] [PubMed] open in new tab
  5. Solis, D., Jr.; Willingham, B.; Nauert, S.L.; Slaughter, L.S.; Olson, J.; Swanglap, P.; Paul, A.; Chang, W.-S.; Link, S. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett. 2012, 12, 1349-1353. [CrossRef] [PubMed] open in new tab
  6. Tang, L.; Yu, G.; Li, X.; Chang, F.; Zhong, C.-J. Palladium-gold alloy nanowire-structured interface for hydrogen sensing. Chempluschem 2015, 80, 722-730. [CrossRef] open in new tab
  7. Karg, M.; König, T.A.F.; Retsch, M.; Stelling, C.; Reichstein, P.M.; Honold, T.; Thelakkat, M.; Fery, A. Colloidal self-assembly concepts for light management in photovoltaics. Mater. Today 2015, 18, 185-205. [CrossRef] open in new tab
  8. Su, M.; Li, F.; Chen, S.; Huang, Z.; Qin, M.; Li, W.; Zhang, X.; Song, Y. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv. Mater. 2016, 28, 1369-1374. [CrossRef] [PubMed] open in new tab
  9. Shen, S.C.; Liu, W.-T.; Diao, J.-J. Colloidally deposited nanoparticle wires for biophysical detection. Chin. Phys. B 2015, 24, 127308. [CrossRef] open in new tab
  10. Li, F.; Badel, X.; Linnros, J.; Wiley, J.B. Fabrication of colloidal crystals with tubular-like packings. J. Am. Chem. Soc. 2005, 127, 3268-3269. [CrossRef] [PubMed] open in new tab
  11. Rozynek, Z.; Wang, B.; Fossum, J.O.; Knudsen, K.D. Dipolar structuring of organically modified fluorohectorite clay particles. Eur. Phys. J. E 2012, 35, 9. [CrossRef] [PubMed] open in new tab
  12. Li, C.; Tan, J.; Li, H.; Gu, J.; Zhang, B.; Zhang, Q. Fast magnetic-field-induced formation of one-dimensional structured chain-like materials via sintering of Fe 3 O 4 /poly(styrene-co-n-butyl acrylate-co-acrylic acid) hybrid microspheres. RSC Adv. 2015, 5, 28735-28742. [CrossRef] open in new tab
  13. Bharti, B.; Findenegg, G.H.; Velev, O.D. Co-assembly of oppositely charged particles into linear clusters and chains of controllable length. Sci. Rep. 2012, 2, 1004. [CrossRef] [PubMed] open in new tab
  14. Jiang, L.; Chen, X.; Lu, N.; Chi, L. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009-3017. [CrossRef] [PubMed] open in new tab
  15. Breidenich, J.L.; Wei, M.C.; Clatterbaugh, G.V.; Benkoski, J.J.; Keng, P.Y.; Pyun, J. Controlling length and areal density of artificial cilia through the dipolar assembly of ferromagnetic nanoparticles. Soft Matter 2012, 8, 5334-5341. [CrossRef] open in new tab
  16. Vilfan, M.; Potocnik, A.; Kavcic, B.; Osterman, N.; Poberaj, I.; Vilfan, A.; Babic, D. Self-assembled artificial cilia. Proc. Natl. Acad. Sci. USA 2010, 107, 1844-1847. [CrossRef] [PubMed] open in new tab
  17. Hill, L.J.; Pyun, J. Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interface 2014, 6, 6022-6032. [CrossRef] [PubMed] open in new tab
  18. Endo, H.; Mochizuki, Y.; Tamura, M.; Kawai, T. Fabrication and functionalization of periodically aligned metallic nanocup arrays using colloidal lithography with a sinusoidally wrinkled substrate. Langmuir 2013, 29, 15058-15064. [CrossRef] [PubMed] open in new tab
  19. Hornyak, G.; Kroll, M.; Pugin, R.; Sawitowski, T.; Schmid, G.; Bovin, J.O.; Karsson, G.; Hofmeister, H.; Hopfe, S. Gold clusters and colloids in alumina nanotubes. Chem. Eur. J. 1997, 3, 1951-1956. [CrossRef] open in new tab
  20. Huang, J.; Tao, A.R.; Connor, S.; He, R.; Yang, P. A general method for assembling single colloidal particle lines. Nano Lett. 2006, 6, 524-529. [CrossRef] [PubMed] open in new tab
  21. Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227-2231. [CrossRef] [PubMed] open in new tab
  22. Bharti, B.; Velev, O.D. Multidirectional, multicomponent electric field driven assembly of complex colloidal chains. Z. Phys. Chem. 2015, 229, 1075-1088. [CrossRef] open in new tab
  23. Vutukuri, H.R.; Demirors, A.F.; Peng, B.; van Oostrum, P.D.J.; Imhof, A.; van Blaaderen, A. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew. Chem. 2012, 51, 11249-11253. [CrossRef] [PubMed] open in new tab
  24. Gangwal, S.; Pawar, A.; Kretzschmar, I.; Velev, O.D. Programmed assembly of metallodielectric patchy particles in external ac electric fields. Soft Matter 2010, 6, 1413-1418. [CrossRef] open in new tab
  25. Ding, H.; Liu, W.; Ding, Y.; Shao, J.; Zhang, L.; Liu, P.; Liu, H. Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. RSC Adv. 2015, 5, 5523-5532. [CrossRef] open in new tab
  26. Fossum, J.O.; Meheust, Y.; Parmar, K.P.S.; Knudsen, K.D.; Maloy, K.J.; Fonseca, D.M. Intercalation-enhanced electric polarization and chain formation of nano-layered particles. EPL 2006, 74, 438-444. [CrossRef] open in new tab
  27. Xie, Q.; Davies, G.B.; Harting, J. Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces. Soft Matter 2016, 12, 6566-6574. [CrossRef] [PubMed] open in new tab
  28. Kokot, G.; Piet, D.; Whitesides, G.M.; Aranson, I.S.; Snezhko, A. Emergence of reconfigurable wires and spinners via dynamic self-assembly. Sci. Rep. 2015, 5, 9528. [CrossRef] [PubMed] open in new tab
  29. Rozynek, Z.; Han, M.; Dutka, F.; Garstecki, P.; Józefczak, A.; Luijten, E. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis. Nat. Commun. 2017, 8, 15255. [CrossRef] [PubMed] open in new tab
  30. Lascelles, S.F.; Armes, S.P. Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. J. Mater. Chem. 1997, 7, 1339-1347. [CrossRef] open in new tab
  31. Yan, J.; Wang, C.; Gao, Y.; Zheng, Z.; Zhong, S.; Miao, X.; Cui, X.; Wang, H. Anchoring conductive polyaniline on the surface of expandable polystyrene beads by swelling-based and in situ polymerization of aniline method. Chem. Eng. J. 2011, 172, 564-571. [CrossRef] open in new tab
  32. Kim, Y.; Park, D. The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles. Colloid Polym. Sci. 2002, 280, 828-834. [CrossRef] open in new tab
  33. Han, M.G.; Sperry, J.; Gupta, A.; Huebner, C.F.; Ingram, S.T.; Foulger, S.H. Polyaniline coated poly(butyl methacrylate) core-shell particles: Roll-to-Roll printing of templated electrically conductive structures. J. Mater. Chem. 2007, 17, 1347-1352. [CrossRef] open in new tab
  34. Brijmohan, S.B.; Shaw, M.T. Proton exchange membranes based on sulfonated crosslinked polystyrene micro particles dispersed in poly(dimethyl siloxane). Polymer 2006, 47, 2856-2864. [CrossRef] open in new tab
  35. Kim, J.Y.; Kwon, S.; Ihm, D. Reliability and thermodynamic studies of an anisotropic conductive adhesive film (ACAF) prepared from epoxy/rubber resins. J. Mater. Process. Technol. 2004, 152, 357-362. [CrossRef] open in new tab
  36. Yuan, Y.; Lian, Y. Polystyrene microspheres coated with smooth polyaniline shells: Preparation and characterization. Tsinghua Sci. Technol. 2009, 14, 546-550. [CrossRef] open in new tab
  37. Kubarkov, A.V.; Pyshkina, O.A.; Karpushkin, E.A.; Stevenson, K.J.; Sergeyev, V.G. Electrically conducting polymeric microspheres comprised of sulfonated polystyrene cores coated with poly(3,4-ethylenedioxythiophene). Colloid Polym. Sci. 2017, 295, 1049-1058. [CrossRef] open in new tab
  38. Piao, S.H.; Gao, C.Y.; Choi, H.J. Sulfonated polystyrene nanoparticles coated with conducting polyaniline and their electro-responsive suspension characteristics under electric fields. Polymer 2017, 127, 174-181. [CrossRef] open in new tab
  39. Fan, W.; Zhang, C.; Tjiu, W.W.; Liu, T.X. Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. J. Mater. Res. 2013, 28, 611-619. [CrossRef] open in new tab
  40. Pan, Y.F.; Wang, J.N.; Wang, Y.; Wang, Z.Q. PS microspheres coated by AuNPs via thermodynamic driving heterocoagulation and their high catalytic activity. Macromol. Rapid. Commun. 2014, 35, 635-641. [CrossRef] [PubMed] open in new tab
  41. Lee, J.-H.; Lee, Y.; Nam, J.-D. Tunable surface metal morphologies and electrical properties of monodispersed polystyrene beads coated with metal multilayers via electroless deposition. Intermetallics 2009, 17, 365-369. [CrossRef] open in new tab
  42. Mikkelsen, A.; Wojciechowski, J.; Rajňák, M.; Kurimský, J.; Khobaib, K.; Kertmen, A.; Rozynek, Z. Electric field-driven assembly of sulfonated polystyrene microspheres. Materials 2017, 10, 329. [CrossRef] [PubMed] open in new tab
  43. Asako, Y.; Ono, S.; Aizawa, R.; Kawakami, T. Properties of electrorheological fluids containing numerously sulfonated polymer particles. In Progress in Electrorheology: Science and Technology of Electrorheological Materials; open in new tab
  44. Havelka, K.O.L., Filisko, F.E., Eds.; Springer US: Boston, MA, USA, 1995; Volume 8, pp. 147-156. open in new tab
  45. Asako, Y.; Ono, S.; Aizawa, R.; Kawakami, T. Properties of electrorheological fluids containing sulfonated poly(styrene-co-divinylbenzene) particles. Int. J. Mod. Phys. B 1996, 10, 3159-3166. [CrossRef] open in new tab
  46. Fan, X.; Niu, L.; Wu, Y.H.; Cheng, J.; Yang, Z.R. Assembly route toward raspberry-like composite particles and their controlled surface wettability through varied dual-size binary roughness. Appl. Surf. Sci. 2015, 332, 393-402. [CrossRef] open in new tab
  47. Fan, X.; Niu, L.; Xia, Z. Preparation of raspberry-like silica microcapsules via sulfonated polystyrene template and aniline medium assembly method. Colloid Polym. Sci. 2014, 292, 3251-3259. [CrossRef] open in new tab
  48. Davis, L.C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys. 1992, 72, 1334-1340. [CrossRef] open in new tab
  49. Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 2005.
  50. Saville, D.A. Electrohydrodynamics: The taylor-melcher leaky dielectric model. Annu. Rev. Fluid Mech. 1997, 29, 27-64. [CrossRef] open in new tab
  51. Drews, A.M.; Cartier, C.A.; Bishop, K.J.M. Contact charge electrophoresis: Experiment and theory. Langmuir 2015, 31, 3808-3814. [CrossRef] [PubMed] open in new tab
  52. Kucera, F.; Jancar, J. Preliminary study of sulfonation of polystyrene by homogeneous and heterogeneous reaction. Chem Pap 1996, 50, 224-227. open in new tab
  53. Benavides, R.; Oenning, L.W.; Paula, M.M.S.; Da Silva, L. Properties of polystyrene/acrylic acid membranes after sulphonation reactions. J. New Mat. Electrochem. Syst. 2014, 17, 85-90. open in new tab
  54. Wallace, R.A. Electrical-conduction in sulfonated polystyrene films. J. Appl. Polym. Sci. 1973, 17, 231-238. [CrossRef] open in new tab
  55. Ikazaki, F.; Kawai, A.; Kawakami, T.; Konishi, M.; Asako, Y. Electrorheology of suspension of sulfonated styrene-co-divinylbenzene particles -approach based on the dielectric properties of the suspension. Int. J. Mod. Phys. B 1999, 13, 1845-1851. [CrossRef] open in new tab
  56. Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862-865. [CrossRef] [PubMed] open in new tab
  57. Li, F.; Anzel, P.; Yang, J.; Kevrekidis, P.G.; Daraio, C. Granular acoustic switches and logic elements. Nat. Commun. 2014, 5, 5311. [CrossRef] [PubMed] open in new tab
  58. Li, D.C.; Banon, S.; Biswal, S.L. Bending dynamics of DNA-linked colloidal particle chains. Soft Matter 2010, 6, 4197-4204. [CrossRef] open in new tab
  59. Sun, Y.C.; Fei, H.T.; Huang, P.C.; Juan, W.T.; Huang, J.R.; Tsai, J.C. Short granular chain under vibration: Spontaneous switching of states. Phys. Rev. E 2016, 93, 032902. [CrossRef] [PubMed] open in new tab
  60. Dommersnes, P.; Rozynek, Z.; Mikkelsen, A.; Castberg, R.; Kjerstad, K.; Hersvik, K.; Otto Fossum, J. Active structuring of colloidal armour on liquid drops. Nat. Commun. 2013, 4, 2066. [CrossRef] [PubMed] open in new tab
  61. Axelrod, N.; Axelrod, E.; Gutina, A.; Puzenko, A.; Ben Ishai, P.; Feldman, Y. Dielectric spectroscopy data treatment: I. Frequency domain. Meas. Sci. Technol. 2004, 15, 755-764. [CrossRef] open in new tab
  62. Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2003. open in new tab
  63. Rozynek, Z.; Dommersnes, P.; Mikkelsen, A.; Michels, L.; Fossum, J.O. Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces. Eur. Phys. J.-Spec. Top. 2014, 223, 1859-1867. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 86 times

Recommended for you

Meta Tags