Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment - Publication - Bridge of Knowledge

Search

Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment

Abstract

We study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar in its structure. The subdiffusion that emerges in such a high-dimensional, fractal environment leads to a Fokker–Planck Equation with a fractional time derivative. We set up such aso-called fractional Fokker–Planck Equation for the aggregation into granules. From that Fokker–Planck Equation, we derive an expression for the entropy production of a growing granule.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 24 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ENTROPY no. 20, edition 9, pages 1 - 5,
ISSN: 1099-4300
Language:
English
Publication year:
2018
Bibliographic description:
Weber P., Bełdowski P., Bier M., Gadomski A.: Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment// ENTROPY-SWITZ. -Vol. 20, iss. 9 (2018), s.1-5
DOI:
Digital Object Identifier (open in new tab) 10.3390/e20090651
Bibliography: test
  1. Gadomski, A.; Siódmiak, J.; Santamaria-Holek, I.; Rubi, J.M.; Ausloos, M. Kinetics of growth process controlled by mass-convective fluctuations and finite-size curvature effects. Acta Phys. Pol. B 2005, 36, 1537-1559.
  2. Hari, G.G.; Hales, C.A. Chemistry and Biology of Hyaluronan; Elsevier Science: Amsterdam, The Netherlands, 2008.
  3. Temple-Wong, M.M.; Ren, S.; Quach, P.; Hansen, B.C.; Chen, A.C.; Hasegawa, A.; D'Lima, D.D.; Koziol, J.; Masuda, K.; Lotz, M.K.; et al. Hyaluronan concentration and size distribution in human knee synovial fluid: Variations with age and cartilage degeneration. Arthritis Res. Ther. 2016, 18, 142-149. [CrossRef] [PubMed] open in new tab
  4. Archer, C.W.; Caterson, B.; Benjamin, M.; Ralphs, J.R. Biology of the Synovial Joint; Harwood Academics: London, UK, 1999.
  5. Frauenfelder, H.; Sligar, S.G.; Wolynes, P.G. The energy landscapes and motions of proteins. Science 1991, 254, 1598-1603. [CrossRef] [PubMed] open in new tab
  6. Metzler, R.; Jeon, J.-H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128-24164. [CrossRef] [PubMed] open in new tab
  7. Schulz, J.H.P.; Barkai, E.; Metzler, R. Aging Renewal Theory and Application to Random Walks. Phys. Rev. X 2014, 4, 011028. [CrossRef] open in new tab
  8. Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 254, 46-53. [CrossRef] open in new tab
  9. Hu, X.; Hong, L.; Smith, M.D.; Neusius, T.; Cheng, X.; Smith, J.C. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time. Nat. Phys. 2016, 12, 171-174. [CrossRef] open in new tab
  10. Rubi, J.M.; Gadomski, A. Nonequilibrium thermodynamics vs model grain growth: Derivation and some physical implications. Physica A 2003, 326, 333-343. [CrossRef] open in new tab
  11. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2007; pp. 193-200. open in new tab
  12. Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213-231. [CrossRef] open in new tab
  13. Metzler, R.; Klafter, J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1-77. [CrossRef] open in new tab
  14. Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161-R208. [CrossRef] open in new tab
  15. Metzler, R.; Barkai, E.; Klafter, J. Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys. Lett. 1999, 46, 431-436. [CrossRef] open in new tab
  16. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
  17. Van Kampen, N.G. The definition of entropy in non-equilibrium states. Physica 1959, 25, 1294-1302. [CrossRef] open in new tab
  18. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79-86. [CrossRef] open in new tab
  19. Perez-Madrid, A.; Rubi, J.M.; Mazur, P. Brownian motion in the presence of a temperature gradient. Phys. A 1994, 212, 231-238. [CrossRef] open in new tab
  20. Barkai, E.; Garini, Y.; Metzler, R. Strange kinetics of single molecules in living cells. Phys. Today 2012, 65, 29-35. [CrossRef] open in new tab
  21. Balankin, A.S.; Elizarraraz, B.E. Hydrodynamics of fractal continuum flow. Phys. Rev. E 2012, 85, 025302. [CrossRef] [PubMed] open in new tab
  22. Sun, H.G.; Meerschaert, M.M.; Zhang, Y.; Zhu, J.; Chen, W. A fractal Richards' equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv. Water Resour. 2013, 52, 292-295. [CrossRef] [PubMed] c 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 153 times

Recommended for you

Meta Tags