EXTREME RAINFALLS AS A CAUSE OF URBAN FLASH FLOODS; A CASE STUDY OF THE ERBIL-KURDISTAN REGION OF IRAQ - Publication - Bridge of Knowledge

Search

EXTREME RAINFALLS AS A CAUSE OF URBAN FLASH FLOODS; A CASE STUDY OF THE ERBIL-KURDISTAN REGION OF IRAQ

Abstract

Aim of the study The current paper aims to give a detailed evaluation and analysis of some extreme rainfall events that happened in the last decade in terms of spatial and temporal rainfall distribution, intensity rate, and exceedance probability. Moreover, it examines the effects of each analysed aspect on the resulting flash floods in the studied area. Material and methods In their glossary of meteorology, American Meteorology Society (AMS) subdivided rainfall intensity types into four groups (light, moderate, heavy, and violent). Also, for estimating the exceedance probability, lognormal distribution was applied as a statistical model of the precipitation probability distribution function. Results and conclusions Out of six episodes, five of the analysed events were classified as heavy rainfall. However, the duration of those heavy rainfall events was not more than two hours. Four events of maximum daily rainfall (for a 39-year dataset) were rated at 1–10% of exceedance probability. To conclude, the current study can be an initial step in modelling hydrological events in the studied area, and in the process of transforming precipitation into the outflows of urban basins in the future.

Cite as

Full text

download paper
downloaded 312 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Acta Scientiarum Polonorum Formatio Circumiectus no. 18, pages 113 - 132,
ISSN: 1644-0765
Language:
English
Publication year:
2019
Bibliographic description:
Mustafa A., Muhammed H., Szydłowski M.: EXTREME RAINFALLS AS A CAUSE OF URBAN FLASH FLOODS; A CASE STUDY OF THE ERBIL-KURDISTAN REGION OF IRAQ// Acta Scientiarum Polonorum Formatio Circumiectus -Vol. 18,iss. 3 (2019), s.113-132
Bibliography: test
  1. Allan, R. P., Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481-1484. open in new tab
  2. Arnbjerg-Nielsen, K., Leonardsen, L., Madsen, H. (2015). Evaluating adaptation options for urban flooding based on new high-end emission scenario regional climate mo- del simulations. Climate Research, 64(1), 73-84. open in new tab
  3. Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future -predicting climate change, risks and responses in urban areas. Water Scien- ce and Technology, 52(5), 265-273. open in new tab
  4. Ávila, A. D., Carvajal, Y. E., Justino, F. (2015). Representa- tive rainfall thresholds for flash floods in the Cali river watershed, Colombia. Natural Hazards and Earth Sys- tem Sciences Discussions, 3(6), 4095-4119. open in new tab
  5. Banasik, K., Wałęga, A., Węglarczyk, S., Więzik, B. (2017). Aktualizacja metodyki obliczania przepływów i opadów maksymalnych o określonym prawdopodobieństwie prze- wyższenia dla zlewni kontrolowanych i niekontrolowa- nych oraz identyfikacji modeli transformacji opadu w od- pływ. Warszawa: Stowarzyszenie Hydrologów Polskich.
  6. Ben-Zvi, A. (2009). Rainfall intensity-duration-frequency relationships derived from large partial duration series. Journal of Hydrology, 367(1), 104-114. open in new tab
  7. Bezak, N., Šraj, M., Rusjan, S., Mikoš, M. (2018). Impact of the Rainfall Duration and Temporal Rainfall Distri- bution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results. Geosciences, 8(2), 69. open in new tab
  8. Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sa- hoo, M., & Panda, A. (2016). Modeling urban floods and drainage using SWMM and MIKE URBAN: a case stu- dy. Natural Hazards, 84(2), 749-776. open in new tab
  9. Christensen, J. H., & Christensen, O. B. (2007). A summa- ry of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81(1), 7-30. open in new tab
  10. Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Ba- sin. JAWRA Journal of the American Water Resources Association, 50(5), 1226-1241. open in new tab
  11. Fuka, D. R., Walter, M. T., MacAlister, C., Degaetano, A. T., Steenhuis, T. S., Easton, Z. M. (2014). Using the Cli- mate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613-5623. open in new tab
  12. Glickman, T. S. (2000). Glossary of meteorology -Ame- rican Meteorological Society. Boston, Mass.: American Meteorological Soc. open in new tab
  13. Hameed, H. (2013). Water harvesting in Erbil Governorate, Kurdistan region, Iraq : detection of suitable sites using geographic information system and remote sensing.
  14. Hameed, H. M. (2017). Estimating the Effect of Urban Gro- wth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq. Hydrology, 4(1), 12. open in new tab
  15. Huff, F. A. (1967). Time distribution of rainfall in heavy storms. Water Resources Research, 3(4), 1007-1019. open in new tab
  16. Joo, J., Kjeldsen, T., Kim, H.-J., & Lee, H. (2014). A com- parison of two event-based flood models (ReFH-ra- infall runoff model and HEC-HMS) at two Korean catchments, Bukil and Jeungpyeong. KSCE Journal of Civil Engineering, 18(1), 330-343. open in new tab
  17. Koutsoyiannis, D., Kozonis, D., & Manetas, A. (1998). A mathematical framework for studying rainfall inten- sity-duration-frequency relationships. Journal of Hydro- logy, 206(1), 118-135. open in new tab
  18. KRSO. (2014). Report of the expectation of Kurdistan Re- gion Population from 2009-2020. Retrieved from http:// www.krso.net/files/articles/130814020950.pdf
  19. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Doll, P., Ji- menez, B., Miller, K., Shiklomanov, I. (2008). The im- plications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 53(1), 3-10. open in new tab
  20. Kvočka, D., Falconer, R. A., & Bray, M. (2015). Appropria- te model use for predicting elevations and inundation extent for extreme flood events. Natural Hazards, 79(3), 1791-1808. open in new tab
  21. Majewski, W. C. (2016). Urban flash flood in Gdańsk - 2001. Case study. Meteorology Hydrology and Water Management, 4(2), 41-49. open in new tab
  22. Miceli, R., Sotgiu, I., & Settanni, M. (2008). Disaster prepa- redness and perception of flood risk: A study in an alpi- ne valley in Italy. Journal of Environmental Psychology, 28(2), 164-173. open in new tab
  23. Nanekely, M., Scholz, M., & Al-Faraj, F. (2016). Strategic Framework for Sustainable Management of Drainage Systems in Semi-Arid Cities: An Iraqi Case Study. Wa- ter, 8(9), 406. open in new tab
  24. Nilo, de O. N., Balbi Diego Antonio Fonseca, & Naghetti- ni Mauro. (2012). Modeling the Time Distributions of Heavy Storms -Design Hyetographs. Building Partner- ships, 1-10.
  25. Opolot, E. (2013). Application of remote sensing and geo- graphical information systems in flood management : a review. Research Journal of Applied Sciences Engine- ering and Technology, 6(10), 1884-1894. open in new tab
  26. Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G. J., Allen, M. R. (2011). Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334), 382-385. open in new tab
  27. Rojas, R., Feyen, L., & Watkiss, P. (2013). Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Global Environmental Change, 23(6), 1737-1751. open in new tab
  28. Ruin, I., Lutoff, C., Boudevillain, B., Creutin, J.-D., Anqu- etin, S., Rojo, M. B., Vannier, O. (2013). Social and Hydrological Responses to Extreme Precipitations: An Interdisciplinary Strategy for Postflood Investigation. Weather, Climate, and Society, 6(1), 135-153. open in new tab
  29. Smith, B., Rodriguez, S. (2017). Spatial Analysis of High -Resolution Radar Rainfall and Citizen-Reported Flash Flood Data in Ultra-Urban New York City. Water, 9(10), 736. open in new tab
  30. Stedinger, J. R., Vogel, R. M., & Foufoula-Georgious, E. (1993). Frequency Analysis of Extreme Events. In Han- dbook of Hydrology. New York: McGraw-Hill.
  31. Szpakowski, W., & Szydłowski, M. (2018). Evaluating the Catastrophic Rainfall of 14 July 2016 in the Catchment Basin of the Urbanized Strzyza Stream in Gdańsk, Po- land. Polish Journal of Environmental Studies, 27(2), 861-869. open in new tab
  32. Szydłowski, M., Mikos-Studnicka, P., Zima, P., Weinerow- ska-Bords, K., Hakiel, J., Kalinowska, D. (2015). Stor- mwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin. 141-150. open in new tab
  33. Veldhuis, J. A. E. ten, Clemens, F. H. L. R., Gelder, P. H. A. J. M. van. (2011). Quantitative fault tree analysis for urban water infrastructure flooding. Structure and Infra- structure Engineering, 7(11), 809-821. www.acta.urk.edu.pl/pl open in new tab
  34. Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics-Tran- sactions of the Asme, 18(3), 293-297.
  35. Weinerowska-Bords, K. (2015). Development of Local IDF -formula Using Controlled Random Search Method for Global Optimization. Acta Geophysica, 63(1), 232-274. open in new tab
  36. Youssef, A. M., Sefry, S. A., Pradhan, B., & Alfadail, E. A. (2016). Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using mul- ti-sensor remote sensing data and GIS. Geomatics, Na- tural Hazards and Risk, 7(3), 1018-1042. open in new tab
Verified by:
Gdańsk University of Technology

seen 478 times

Recommended for you

Meta Tags