Fuzzy Control of Waves Generation in a Towing Tank - Publication - Bridge of Knowledge

Search

Fuzzy Control of Waves Generation in a Towing Tank

Abstract

This paper presents the results of research related to the transformation of electrical energy into potential and kinetic energy of waves generated on the water surface. The waves are generated to model the environmental conditions for the needs of the model tests. The model tests are performed on model-scale objects to predict the features of full-scale maritime objects. It is done to improve human safety and the survivability of constructions. Electrical energy is transformed into the energy of the water waves using a wave maker. The wave maker considered is a facility with an electrohydraulic drive and an actuator submerged into the water. The actuator movement results in the waves being mechanically-generated in accordance with the wave maker theory. The study aimed to investigate the advantage of the newly implemented fuzzy-logic controller over the hitherto cascading proportional-integral controllers of the wave maker actuator. The research was focused on experimental investigation of the transformation process outcomes harvested under the fuzzy-logic controller, versus the cascading proportional-integral controllers. The waves were generated and measured in the real towing tank, located in the Maritime Advanced Research Centre (CTO S.A.). The investigation confirmed the advantage of the fuzzy-logic controller. It provides more accurate transformation of energy into the desired form of the water waves of specified parameters—frequency and amplitude—and more flat amplitude-frequency characteristic of the transformation process.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 37 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENERGIES no. 13, pages 1 - 17,
ISSN: 1996-1073
Language:
English
Publication year:
2020
Bibliographic description:
Drzewiecki M., Guziński J.: Fuzzy Control of Waves Generation in a Towing Tank// ENERGIES -Vol. 13,iss. 8 (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.3390/en13082049
Bibliography: test
  1. Dudziak, J. Dynamikaśrodowiska. In Teoria OkręTu;
  2. Dudziak, J., Ed.; Wydawnictwo Morskie: Gdańsk, Poland, 1988; p. 338. (In Polish)
  3. Buckingham, E. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Phys. Rev. 1914, 4, 345-376. [CrossRef] open in new tab
  4. Ordonez-Sanchez, S.; Allmark, M.; Porter, K.; Ellis, R.; Lloyd, C.; Santic, I.; O'Doherty, T.; Johnstone, C. Analysis of a Horizontal-Axis Tidal Turbine Performance in the Presence of Regular and Irregular Waves Using Two Control Strategies. Energies 2019, 12, 367. [CrossRef] open in new tab
  5. Chybowski, L.; Grządziel, Z.; Gawdzińska, K. Simulation and Experimental Studies of a Multi-Tubular Floating Sea Wave Damper. Energies 2018, 11, 1012. [CrossRef] open in new tab
  6. Stratigaki, V.; Troch, P.; Stallard, T.; Forehand, D.; Kofoed, J.P.; Folley, M.; Benoit, M.; Babarit, A.; Kirkegaard, J. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area. Energies 2014, 7, 701-734. [CrossRef] open in new tab
  7. Poguluri, S.K.; Cho, I.-H.; Bae, Y.H. A Study of the Hydrodynamic Performance of a Pitch-type Wave Energy Converter-Rotor. Energies 2019, 12, 842. [CrossRef] open in new tab
  8. Drzewiecki, M. Control of the Waves in a Towing Tank with the Use of a Black-Box Model. ZN WEiA PG 2018, 59, 37-42. [CrossRef] open in new tab
  9. Iafrati, A.; Drazen, D.; Kent, C.; Fujiwara, T.; Zong, Z.; Ma, Y.; Kim, H.J.; Xiao, L.; Hennig, J.; Sharnke, J. Laboratory modelling of Waves: Regular, irregular and extreme events. In Proceedings of the 28th ITTC Specialist Committee on Modeling of Environmental Conditions, Wuxi, China, 17-22 September 2017; p. 8.
  10. Havelock, T.H. Forced surface-wave on water. Phyl. Mag. 1929, 8, 569-576. [CrossRef] open in new tab
  11. Biésel, F.; Suquet, F. Les appareils en générateurs laboratoire, Laboratory wave generating apparatus. LHB 1951, 2, 147-165. [CrossRef] open in new tab
  12. Biésel, F.; Suquet, F. Les appareils en générateurs laboratoire, Laboratory wave generating apparatus. LHB 1951, 4, 475-496. [CrossRef] open in new tab
  13. Biésel, F.; Suquet, F. Les appareils en générateurs laboratoire, Laboratory wave generating apparatus. LHB 1951, 5, 723-737. [CrossRef] open in new tab
  14. Biésel, F.; Suquet, F. Les appareils en générateurs laboratoire, Laboratory wave generating apparatus. LHB 1952, 6, 779-801. [CrossRef] open in new tab
  15. Ursell, F.; Dean, R.G.; Yu, Y.S. Forced small amplitude waves: A comparison of theory and experiment. J. Fluid Mech. 1960, 7, 33-52. [CrossRef] open in new tab
  16. Galvin, C.J. Wave-height prediction for wave generators in shallow water. In Technical Memorandum No. 4; Department of the Army Corps of Engineers: Washington, DC, USA, 1964; pp. 1-20.
  17. Keating, T.; Webber, N.B. The generation of periodic waves in a laboratory channel: A comparison between theory and experiment. In Proceedings of the Institution of Civil Engineers-Volume 63; Department of Civil Engineering: Southampton, UK, 1977; pp. 819-832. [CrossRef] open in new tab
  18. Campos, C.; Silveira, F.; Mendes, M. Waves inducted by non-permanent paddle movements. In Coastal Engineering Proceedings-Volume 13;
  19. American Society of Civil Engineers: Vancouver, BC, Canada, 1972; pp. 707-722. [CrossRef] open in new tab
  20. Hudspeth, R.T.; Sulisz, W. Stokes drift in 2-D wave flumes. J. Fluid Mech. 1991, 230, 209-229. [CrossRef] open in new tab
  21. Madsen, O.S. On the generation of long waves. J. Geo. Res. 1971, 76, 8672-8683. [CrossRef] open in new tab
  22. Moubayed, W.I.; Williams, A.N. Second-order bichromatic waves produced by a generic planar wavemaker in a two-dimensional wave flume. J. Fluids Struct. 1994, 8, 73-92. [CrossRef] open in new tab
  23. Schaffer, H.A. Second-order wavemaker theory for irregular waves. Ocean Eng. 1996, 23, 47-88. [CrossRef] open in new tab
  24. Sulisz, W.; Hudspeth, R.T. Complete second order solution for water waves generated in wave flumes. J. Fluids Struct. 1993, 7, 253-268. [CrossRef] open in new tab
  25. Grilli, S.; Horrillo, J. Numerical Generation and Absorption of Fully Nonlinear Periodic Waves. J. Eng. Mech. 1997, 123, 1060-1069. [CrossRef] open in new tab
  26. Liu, S.-X.; Teng, B.; Yu, Y.-X. Wave generation in a computation domain. Appl. Math. Mod. 2005, 29, 1-17. [CrossRef] open in new tab
  27. Liu, X.; Lin, P.; Shao, S. ISPH wave simulation by using an internal wave maker. Coast. Eng. 2015, 95, 160-170. [CrossRef] open in new tab
  28. Multer, R.H. Exact nonlinear model of wave generator. J. Hydr. Res. 1973, 99, 31-46.
  29. Zhang, X.T.; Khoo, B.C.; Lou, J. Wave propagation in a fully nonlinear numerical wave tank: A desingularized method. Ocean Eng. 2006, 33, 2310-2331. [CrossRef] open in new tab
  30. Zheng, J.; Soe, M.M.; Zhang, C.; Hsu, T.-W. Numerical wave flume with improved smoothed particle hydrodynamics. J. Hydr. 2010, 22, 773-781. [CrossRef] open in new tab
  31. Wang, W.; Kamath, A.; Pakozdi, C.; Bihs, H. Investigation of Focusing Wave Properties in a Numerical Wave Tank with a Fully Nonlinear Potential Flow Model. J. Mar. Sci. Eng. 2019, 7, 375. [CrossRef] open in new tab
  32. Windt, C.; Davidson, J.; Schmitt, P.; Ringwood, J.V. On the Assessment of Numerical Wave Makers in CFD Simulations. J. Mar. Sci. Eng. 2019, 7, 47. [CrossRef] open in new tab
  33. Schmitt, P.; Windt, C.; Davidson, J.; Ringwood, J.V.; Whittaker, T. The Efficient Application of an Impulse Source Wavemaker to CFD Simulations. J. Mar. Sci. Eng. 2019, 7, 71. [CrossRef] open in new tab
  34. Lee, S.; Hong, J.-W. A Semi-Infinite Numerical Wave Tank Using Discrete Particle Simulations. J. Mar. Sci. Eng. 2020, 8, 159. [CrossRef] open in new tab
  35. Jia, W.; Liu, S.; Li, J.; Fan, Y. A Three-Dimensional Numerical Model with an L-Type Wave-Maker System for Water Wave Simulations by the Moving Boundary Method. Water 2020, 12, 161. [CrossRef] open in new tab
  36. Drzewiecki, M.; Sulisz, W. Generation and Propagation of Nonlinear Waves in a Towing Tank. PMR 2019, 1, 125-133. [CrossRef] open in new tab
  37. Xu, G.; Hao, H.; Ma, Q.; Gui, Q. An Experimental Study of Focusing Wave Generation with Improved Wave Amplitude Spectra. Water 2019, 11, 2521. [CrossRef] open in new tab
  38. Eldrup, M.R.; Lykke Andersen, T. Applicability of Nonlinear Wavemaker Theory. J. Mar. Sci. Eng. 2019, 7, 14. [CrossRef] open in new tab
  39. Iafrati, A.; Drazen, D.; Kent, C.; Fujiwara, T.; Zong, Z.; Ma, Y.; Kim, H.J.; Xiao, L.; Hennig, J.; Sharnke, J. Report of the Specialist Committee on Modelling of Environmental Conditions. In Proceedings of the 28th ITTC Specialist Committee on Modeling of Environmental Conditions, Wuxi, China, 17-22 Septemper 2017;
  40. Lechevallier, F. 12 metre wave generator operator's manual. In Maritime Advanced Research Centre (CTO S.A.) Archives; ALSTHOM techniques des fluids: Gdańsk, Poland, 1974.
  41. Drzewiecki, M. The modernizing of cascade control system of the wave generator for towing tank. ZN WEiA PG 2015, 47, 39-42. open in new tab
  42. Drzewiecki, M. Digital control system of the wave maker in the towing tank. AEZ 2016, 7, 138-146. [CrossRef] open in new tab
  43. Drzewiecki, M. Modelling, Simulation and Optimization of the Wavemaker in a Towing Tank. In Advances in Intelligent Systems and Computing-Volume 577; open in new tab
  44. Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 570-579.
  45. Sinthipsomboon, K.; Hunsacharoonroj, I.; Khedari, J.; Pongaen, W.; Pratumsuwan, P. A Hybrid of Fuzzy and Fuzzy Self-Tuning PID Controller for Servo Electro-Hydraulic System. In Recent Advances in Theory and Applications; INTECH: London, UK, 2012; pp. 299-314. open in new tab
  46. Jianxin, L.; Ping, T. Fuzzy Logic Control of Integrated Hydraulic Actuator Unit Using High Speed Switch Valves. In Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing-Volume 01, Wuhan, China, 6-7 June 2009; pp. 370-373. open in new tab
  47. Wonohadidjojo, D.M.; Kothapalli, G.; Hassan, M.Y. Position Control of Electro-Hydraulic Actuator using Fuzzy Logic Controller Optimized by Particle Swarm Optimization. IJAC 2013, 10, 181-193. [CrossRef] open in new tab
  48. Stansberg, C.T.; Contento, G.; Hong, S.W.; Irani, M.; Ishida, S.; Mercier, R.; Wang, Y.; Wolfram, J.; Chaplin, J.; Kriebel, D. Final Report and Recommendations to the 23rd ITTC. In Proceedings of the 23rd ITTC-Volume II, Specialist Committee on Waves, Venice, Italy, 8-14 September 2002; pp. 517, 544-551.
  49. Cox, G.G.; Andrew, R.N.; Dern, J.C.; Faltinsen, O.; Journée, J.M.J.; Lau, K.; Loukakis, T.; Takaishi, Y.; Takezawa, S. Report of the Seakeeping Committee. In Proceedings of the 17th ITTC-Volume I, Seakeeping Committee, Goteborg, Sweden, 8-15 September 1984; p. 482.
  50. Maria-Arenas, A.; Garrido, A.J.; Rusu, E.; Garrido, I. Control Strategies Applied to Wave Energy Converters: State of the Art. Energies 2019, 12, 3115. [CrossRef] open in new tab
  51. Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Albani, A.; Mohd Yusop, Z. Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review. Energies 2019, 12, 4510. [CrossRef] open in new tab
  52. Giannini, G.; Rosa-Santos, P.; Ramos, V.; Taveira-Pinto, F. On the Development of an Offshore Version of the CECO Wave Energy Converter. Energies 2020, 13, 1036. [CrossRef] open in new tab
  53. Rajapakse, G.; Jayasinghe, S.; Fleming, A. Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays. Energies 2020, 13, 1278. [CrossRef] open in new tab
  54. Zadeh, L.A. Fuzzy sets. IC 1965, 8, 338-353. [CrossRef] open in new tab
  55. Driankov, D.; Hellendoorn, H.; Reinfrank, M. Stability of Fuzzy Control Systems. In An Introduction to Fuzzy Control; Springer: Berlin/Heidelberg, Germany, 1993; pp. 245-292. open in new tab
  56. Jama, M.; Wahyudie, A.; Assi, A.; Noura, H. An Intelligent Fuzzy Logic Controller for Maximum Power Capture of Point Absorbers. Energies 2014, 7, 4033-4053. [CrossRef] open in new tab
  57. Lin, Z.; Wei, Q.; Ji, R.; Huang, X.; Yuan, Y.; Zhao, Z. An Electro-Pneumatic Force Tracking System using Fuzzy Logic Based Volume Flow Control. Energies 2019, 12, 4011. [CrossRef] open in new tab
  58. Liu, D.; Xiao, Z.; Li, H.; Liu, D.; Hu, X.; Malik, O. Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization. Energies 2019, 12, 3903. [CrossRef] 56. ESI Group. Scilab 5.5.2 release. In Scilab 5.5.2; ESI Group: Rungis, France, 2015. open in new tab
  59. Nahrstaedt, H.; Grez, J.U. Fuzzy Logic Toolbox-version 0.4.7. In Automatic Modules Management for Scilab;
  60. Michels, K.; Kruse, R. Numerical Stability Analysis for Fuzzy Control. IJAR 1997, 16, 3-24. [CrossRef] open in new tab
  61. Microsoft Corporation. Microsoft Visual Studio Express 2012 for Windows Desktop. In Older Downloads; open in new tab
  62. Kühner, J. Introducing the .NET Micro Framework. In Expert .NET Micro Framework; Apress: New York, NY, USA, 2009; pp. 1-14. [CrossRef] open in new tab
  63. Drzewiecki, M. A Method and an Ultra-Sound Device for a Wave Profile Measurement in Real Time on the Surface of Liquid, Particularly in a Model Basin. European Patent Application No. EP19460026.8; European Patent Office: Munich, Germany, 2019. open in new tab
  64. Eaton J.W. Octave 5.1.0 Release. Available online: https://www.gnu.org/software/octave/news/release/ 2019/03/01/octave-5.1-released.html (accessed on 13 April 2020).
  65. Miller, M. Signal Processing Package-Version 1.4.1. Available online: https://octave.sourceforge.io/signal/ index.html (accessed on 13 April 2020). open in new tab
  66. c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 109 times

Recommended for you

Meta Tags