Hazardous material-related propagation of the effects of train accidents in the subgrade - Publication - Bridge of Knowledge

Search

Hazardous material-related propagation of the effects of train accidents in the subgrade

Abstract

A large part of the transport of hazardous materials is carried out by rail. Therefore, the security of these transports is becoming increasingly important. Every catastrophe involving dangerous materials has a negative impact on the participants of the incident and the surrounding environment, because its range is generally not local. It follows that in the event of a catastrophe, its effects should be minimized and remediation should be considered in further actions. This whole process of minimization is possible only when we know the mechanism of spreading the effects of a catastrophe involving hazardous materials in the track, subgrade and ground. It should be remembered that in an extreme case, a catastrophe involving hazardous materials may even lead to an ecological disaster. Dynamic systems, especially those with distributed parameters, can be used to describe the mechanism of the disaster's spread. Properties of phenomena accompanying the analyzed catastrophes are well reflected in their linear or non-linear mathematical models analyzed using various operator methods.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 22 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Przegląd Komunikacyjny edition 10, pages 11 - 18,
ISSN: 0033-2232
Language:
English
Publication year:
2018
Bibliographic description:
Mieloszyk E., Grulkowski S., Milewska A.: Hazardous material-related propagation of the effects of train accidents in the subgrade// Przegląd Komunikacyjny. -., iss. 10 (2018), s.11-18
DOI:
Digital Object Identifier (open in new tab) 10.35117/a_eng_18_10_02
Bibliography: test
  1. Eagleson P. S., Hydrologia dynamiczna, Państwowe Wydaw. Naukowe, Warszawa, 1978.
  2. Holnicki P., Nahorski Z., Żochowski A., Modelowanie procesów środowiska naturalnego, Wyższa Szkoła Informatyki Stosowanej i Zarządzania, Warszawa, 2000
  3. Lawrence C. Evans, Partial Differential Equations, American Mathematical Society, 2002
  4. Mieloszyk E., Grulkowski S., Generalized Taylor formula and shell structures for the analysis of the interaction between geosythetics and engineering structures of transportation lines, Shell Structures: Theory and Applications, vol. 4/ ed. Wojciech Pietraszkiewicz & Wojciech Witkowski Londyn: Taylor & Francis, 2018, s.561-564. open in new tab
  5. Mieloszyk E., Milewska A., Grulkowski S., Rozprzestrzenianie się skutków dużych katastrof kolejowych, Archiwum Instytutu Inżynierii Lądowej, Poznań, iss. 25 (2017), s.301-310. open in new tab
  6. Mieloszyk E., Milewska A., Risks associated with the transportation of hazardous materials on public roads, XII Międzynarodowa Konferencja Bezpieczeństwa Ruchu Drogowego Gambit 2018, Politechnika Gdańska, 12-13 kwietnia 2018 open in new tab
  7. Mieloszyk E., Nieklasyczny rachunek operatorów w zastosowaniu do uogólnionych układów dynamicznych. Gdańsk: IMP PAN, 2008.
  8. Świdziński W., Mierczyński J., Badania laboratoryjne zjawiska podatności cyklicznej w nawodnionym, Inżynieria Morska i Geotechnika, nr 4/2009, 271-280
  9. Tihonow A. N., Samarski A. A., Równania fizyki matematycznej, PWN, 1963
  10. Węsierski T., Nagrodzka M., Wypadek kolejowy w Szczygłowicach. Przebieg zdarzenia oraz analiza zagrożeń rzeczywistych oraz potencjalnych, Bezpieczeństwo i Technika Pożarnicza, 2012, nr 1, 113-120
Verified by:
Gdańsk University of Technology

seen 88 times

Recommended for you

Meta Tags