High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation - Publication - Bridge of Knowledge

Search

High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation

Abstract

This research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting Sliding Mode Control (OAST-SMC) algorithm is proposed here as a robust optimal adaptive strategy. In this strategy, in order to improve performance of the standard super-twisting approach, we apply an Approximate Dynamic Programming (ADP)-based optimal tuning of gains and an underlying concept based on Time Delay Estimation (TDE). An ADP algorithm is implemented using an actor-critic neural network to deal with the curse of dimensionality in Hamilton–Jacobi–Bellman (HJB) equation. The critical role of TDE part in this algorithm is estimating the impact of disturbances and uncertainties on the MASS model. The results have shown that OAST-TDE significantly outperforms the ST-TDE and AST-TDE algorithm in terms of the optimal control efforts. Also, compared with a Nonlinear Model Predictive Control (NMPC), proposed controller meets the optimal control efforts and accurate tracking concurrently.

Citations

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Cite as

Full text

download paper
downloaded 97 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
OCEAN ENGINEERING no. 191, pages 1 - 19,
ISSN: 0029-8018
Language:
English
Publication year:
2019
Bibliographic description:
Nejatbakhsh Esfahani H., Szłapczyński R., Ghaemi M. H.: High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation// OCEAN ENGINEERING -Vol. 191, (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.oceaneng.2019.106526
Bibliography: test
  1. Abdelaal, M., Fr, M., Hahn, A., 2018. Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances ☆ 160, 168-180. https://doi.org/10.1016/j.oceaneng.2018.04.026 open in new tab
  2. Esfahani, H.N., Azimirad, V., Eslami, A., Asadi, S., 2013. An optimal sliding mode control based on immune-wavelet algorithm for underwater robotic manipulator. 2013 21st Iran. Conf. Electr. Eng. ICEE 2013 1-6. https://doi.org/10.1109/IranianCEE.2013.6599587 open in new tab
  3. Esfahani, H.N., Azimirad, V., Zakeri, M., 2014. SLIDING MODE-PID FUZZY CONTROLLER WITH A NEW REACHING MODE FOR UNDERWATER ROBOTIC MANIPULATORS 258, 2014.
  4. Esfahani, H. N. 2019. Robust Model Predictive Control for Autonomous Underwater Vehicle-Manipulator System with Fuzzy Compensator. Polish Maritime Research (forthcoming), 10.2478/pomr-2019-00139. open in new tab
  5. Fang, Y., 2004. Global output feedback control of dynamically positioned surface vessels : an adaptive control approach q 14, 341-356. https://doi.org/10.1016/S0957-4158(03)00064-3 open in new tab
  6. Fossen, T.I., 2016. Handbook of Marine Craft Hydrodynamics and Motion Control [Bookshelf]. IEEE Control Syst. 36, 78-79. https://doi.org/10.1109/mcs.2015.2495095 open in new tab
  7. Fu, M., Yu, L., 2018. Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances. Ocean Eng. 159, 219-227. https://doi.org/10.1016/j.oceaneng.2018.04.016 open in new tab
  8. Huang, H., Gong, M., Zhuang, Y., Sharma, S., Xu, D., 2019. A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations. Ocean Eng. 175, 217-222. https://doi.org/10.1016/j.oceaneng.2019.02.042 open in new tab
  9. Hung, N.T., Rego, F., Crasta, N., Pascoal, A.M., 2018. Input-Constrained Path Following for Autonomous Marine Vehicles with a Global Region of Attraction⁎. IFAC-PapersOnLine 51, 348-353. open in new tab
  10. https://doi.org/10.1016/j.ifacol.2018.09.499 open in new tab
  11. Id, D., Rehman, F., Khan, Q., 2018. Smooth super-twisting sliding mode control for the class of underactuated systems 1-21.
  12. Jamalzade, M.S., Koofigar, H.R., Ataei, M., 2016. Adaptive fuzzy control for a class of constrained nonlinear systems with application to a surface vessel. J. Theor. Appl. Mech. 54, 987. https://doi.org/10.15632/jtam-pl.54.3.987 open in new tab
  13. Kali, Y., Saad, M., Benjelloun, K., 2018. Optimal super-twisting algorithm with time delay estimation for robot manipulators based on feedback linearization. Rob. Auton. Syst. 108, 87-99. https://doi.org/10.1016/j.robot.2018.07.004 open in new tab
  14. Liu, C., Zheng, H., Negenborn, R.R., Chu, X., 2013. Computational Logistics 8197, 166-180. https://doi.org/10.1007/978-3-642-41019-2 open in new tab
  15. Liu, C., Zou, Z., Yin, J., 2015. Trajectory tracking of underactuated surface vessels based on neural network and hierarchical sliding mode. J. Mar. Sci. Technol. 20, 322-330. https://doi.org/10.1007/s00773-014-0285-y open in new tab
  16. Liu, J., Luo, J., Cui, J., Peng, Y., 2016. Trajectory Tracking Control of Underactuated USV with Model Perturbation and External Interference. MATEC Web Conf. 77, 0-5. https://doi.org/10.1051/matecconf/20167709009 open in new tab
  17. Liu, L., Wang, D., Peng, Z., 2019. State recovery and disturbance estimation of unmanned surface vehicles based on nonlinear extended state observers. Ocean Eng. 171, 625-632. https://doi.org/10.1016/j.oceaneng.2018.11.008 open in new tab
  18. Liu, L., Wang, D., Peng, Z., Wang, H., 2016. Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with sideslip compensation. Ocean Eng. 124, 340-348. open in new tab
  19. https://doi.org/10.1016/j.oceaneng.2016.07.057 open in new tab
  20. Lu, Y., Zhang, G., Sun, Z., Zhang, W., 2018. Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB. Nonlinear Dyn. 94, 503-519. https://doi.org/10.1007/s11071-018-4374-z Nejatbakhsh, H., Azimirad, V., Danesh, M., 2015. A Time Delay Controller included terminal sliding mode and fuzzy gain tuning for Underwater Vehicle-Manipulator Systems. Ocean Eng. 107, 97-107. open in new tab
  21. https://doi.org/10.1016/j.oceaneng.2015.07.043 open in new tab
  22. Sharma, S.K., Sutton, R., Motwani, A., Annamalai, A., 2014. Non-linear control algorithms for an unmanned surface vehicle. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 228, 146-155. https://doi.org/10.1177/1475090213503630 open in new tab
  23. Shojaei, K., 2016. Observer-based neural adaptive formation control of autonomous surface vessels with limited torque. Rob. Auton. Syst. 78, 83-96. https://doi.org/10.1016/j.robot.2016.01.005 open in new tab
  24. Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M., Poznyak, A.S., 2010. Super-twisting Adaptive Sliding Mode Control : a Lyapunov Design. pp. 5109-5113. open in new tab
  25. Sun, Z., Zhang, G., Yi, B., Zhang, W., 2017. Practical proportional integral sliding mode control for underactuated surface ships in the fi elds of marine practice. Ocean Eng. 142, 217-223. https://doi.org/10.1016/j.oceaneng.2017.07.010 open in new tab
  26. Tanakitkorn, K., Phillips, A.B., Wilson, P.A., Turnock, S.R., 2017. Sliding mode heading control of an overactuated , hover-capable autonomous underwater vehicle with experimental verification 396-415. https://doi.org/10.1002/rob.21766 open in new tab
  27. Valenciaga, F., 2014. A SECOND ORDER SLIDING MODE PATH FOLLOWING CONTROL FOR AUTONOMOUS SURFACE VESSELS 16, 1515-1521. https://doi.org/10.1002/asjc.840 open in new tab
  28. Wang, W., Mateos, L.A., Park, S., Leoni, P., Gheneti, B., Duarte, F., Ratti, C., Rus, D., 2018. Design , Modeling , and Nonlinear Model Predictive Tracking Control of a Novel Autonomous Surface Vehicle. IEEE Int. Conf. Robot. Autom. 6189-6196. https://doi.org/10.1109/ICRA.2018.8460632 open in new tab
  29. Yi, B., Qiao, L., Zhang, W., 2016. Two-time scale path following of underactuated marine surface vessels : Design and stability analysis using singular perturbation methods. Ocean Eng. 124, 287-297. open in new tab
  30. https://doi.org/10.1016/j.oceaneng.2016.07.006 open in new tab
  31. Zhang, P., 2018. Dynamic Surface Adaptive Robust Control of Unmanned Marine. J. Robot. 2018. open in new tab
  32. Zheng, H., Negenborn, R.R., Lodewijks, G., 2014. Trajectory tracking of autonomous vessels using model predictive control. IFAC Proc. Vol. 19, 8812-8818. https://doi.org/10.3182/20140824-6-ZA-1003.00767 open in new tab
Verified by:
Gdańsk University of Technology

seen 149 times

Recommended for you

Meta Tags