High-Temperature Tensile Behaviour of GTAW Joints of P92 Steel and Alloy 617 for Two Different Fillers - Publication - Bridge of Knowledge

Search

High-Temperature Tensile Behaviour of GTAW Joints of P92 Steel and Alloy 617 for Two Different Fillers

Abstract

This study explores the high-temperature (HT) tensile rupture characteristics of a dissimilar gas-tungsten-arc-welded (GTAW) joint between P92 steel and Alloy 617, fabricated using ER62SB9 and ERNiCrCoMo-1 fillers. The high-temperature tensile tests were performed at elevated temperatures of 550 ◦C and 650 ◦C. An optical microscope (OM) and a field emission scanning electron microscope (FESEM) were utilized to characterize the joint. The high-temperature test results indicated that the specimen failed at the P92 base metal/intercritical heat-affected zone (ICHAZ) rather than the weld metal for the ERNiCrCoMo-1(IN617) filler. This finding confirmed the suitability of the joint for use in the Indian advanced ultra-supercritical (A-USC) program. The fracture surface morphology and presence of precipitates were analysed using an SEM equipped with energy dispersive spectroscopy (EDS). The appearance of the dimples and voids confirmed that both welded fillers underwent ductile–dominant fracture. EDS analysis revealed the presence of Cr-rich M23C6 phases, which was confirmed on the fracture surface of the ER62S-B9 weld (P92-weld). The hardness plot was analysed both in the as-welded condition and after the fracture.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 16,
ISSN: 1996-1944
Language:
English
Publication year:
2023
Bibliographic description:
Kumar A., Sirohi S., Pandey S. M., Kumar P., Fydrych D., Pandey C.: High-Temperature Tensile Behaviour of GTAW Joints of P92 Steel and Alloy 617 for Two Different Fillers// Materials -Vol. 16,iss. 17 (2023), s.5880-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma16175880
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 59 times

Recommended for you

Meta Tags