Integrated Photocatalytic Advanced Oxidation System (TiO2/UV/O3/H2O2) for Degradation of Volatile Organic Compounds - Publication - Bridge of Knowledge

Search

Integrated Photocatalytic Advanced Oxidation System (TiO2/UV/O3/H2O2) for Degradation of Volatile Organic Compounds

Abstract

Several advanced oxidation processes (AOPs) including photocatalytic processes were studied for effective treatment of complex model wastewater containing a wide variety of VOCs. The studies revealed synergistic effects of TiO2 based processes for improved degradation of the VOCs. A peroxone combined with TiO2/UV system (TiO2/UV/O3/H2O2) with a ratio between the oxygen source from the oxidant to chemical oxygen demand (COD) of the model wastewater (rox) of 0.5 and 100 mgTiO2/L was the optimal process. TiO2 revealed to be economically reasonable to be used in TiO2/UV/H2O2 and TiO2/UV/O3/H2O2 photocatalytic technologies for efficient and fast (100 min) degradation of VOCs with significantly low amounts of chemicals. Developed system provide high effectiveness with low treatment cost, which in case of most VOCs studied provide satisfactory effects in 15 min. of treatment process with 4 $/m3 of process costs. The technologies are promising in degradation and purification in several types of industrial effluents with a high VOCs content.

Citations

  • 1 3 9

    CrossRef

  • 0

    Web of Science

  • 1 3 6

    Scopus

Cite as

Full text

download paper
downloaded 168 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SEPARATION AND PURIFICATION TECHNOLOGY no. 224, pages 1 - 14,
ISSN: 1383-5866
Language:
English
Publication year:
2019
Bibliographic description:
Fernandes A., Gągol M., Makoś P., Ali J., Boczkaj G.: Integrated Photocatalytic Advanced Oxidation System (TiO2/UV/O3/H2O2) for Degradation of Volatile Organic Compounds// SEPARATION AND PURIFICATION TECHNOLOGY. -Vol. 224, (2019), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.seppur.2019.05.012
Bibliography: test
  1. Y. Xie, L. Chen, R. Liu, Oxidation of AOX and organic compounds in pharmaceuti- cal wastewater in RSM-optimized-Fenton system, Chemosphere 155 (2016) 217-224, https://doi.org/10.1016/j.chemosphere.2016.04.057. open in new tab
  2. A.S. Costa, L.P.C. Romão, B.R. Araújo, S.C.O. Lucas, S.T.A. Maciel, A. Wisniewski, M.R. Alexandre, Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass, Bioresour. Technol. 105 (2012) 31-39, https://doi.org/10.1016/j.biortech.2011.11.096. open in new tab
  3. P. Stepnowski, E.M. Siedlecka, P. Behrend, B. Jastorff, Enhanced photo-degrada- tion of contaminants in petroleum refinery wastewater, Water Res. 36 (2002) 2167-2172. open in new tab
  4. A. Latorre, A. Rigol, S. Lacorte, D. Barcelo, C omparison of gas chromatography - mass spectrometry and liquid chromatography -mass spectrometry for the deter- mination of fatty and resin acids in paper mill process waters, J. Chromatogr. A 991 (2003) 205-215, https://doi.org/10.1016/S0021-9673(03)00217-6. open in new tab
  5. A. Rigol, A. Latorre, S. Lacorte, D. Barceló, Determination of toxic compounds in paper-recycling process waters by gas chromatography-mass spectrometry and liq- uid chromatography-mass spectrometry, J. Chromatogr. A 963 (2002) 265-275, https://doi.org/10.1016/S0021-9673(02)00232-7. open in new tab
  6. X.A. Ning, J.Y. Wang, R.J. Li, W. Bin Wen, C.M. Chen, Y.J. Wang, Z.Y. Yang, J.Y. Liu, Fate of volatile aromatic hydrocarbons in the wastewater from six textile dye- ing wastewater treatment plants, Chemosphere 136 (2015) 50-55, https://doi.org/ 10.1016/j.chemosphere.2015.03.086. open in new tab
  7. M. Castillo, Characterization of organic pollutants in industrial effluents by high-temperature gas chromatography-mass spectrometry, TrAC Trends Anal. Chem. 18 (1999) 26-36, https://doi.org/10.1016/S0165-9936(98)00066-1. open in new tab
  8. L.B. Paulik, C.E. Donald, B.W. Smith, L.G. Tidwell, K.A. Hobbie, L. Kincl, E.N. Haynes, K.A. Anderson, Emissions of polycyclic aromatic hydrocarbons from nat- ural gas extraction into air, Environ. Sci. Technol. 50 (2016) 7921-7929, https:// doi.org/10.1021/acs.est.6b02762. open in new tab
  9. A.T. Nielsen, S. Jonsson, Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase microextraction, J. Chromatogr. A. 963 (2002) 57-64, https://doi.org/10.1016/S0021-9673(02)00556-3. open in new tab
  10. F. Lestremau, V. Desauziers, J.C. Roux, J.L. Fanlo, Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial ef- fluents by solid-phase microextraction and gas chromatography-pulsed flame pho- tometric detection, J. Chromatogr. A 999 (2003) 71-80, https://doi.org/10.1016/ S0021-9673(03)00328-5. open in new tab
  11. G. Boczkaj, A. Fernandes, P. Makoś, Study of different advanced oxidation processes for wastewater treatment from petroleum bitumen production at basic pH, Ind. Eng. Chem. Res. 56 (2017) 8806-8814, https://doi.org/10.1021/acs.iecr. 7b01507. open in new tab
  12. A. Fernandes, P. Makos, G. Boczkaj, Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions, J. Clean. Prod. 195 (2018) 374-384, https://doi.org/10.1016/j.jclepro. 2018.05.207. open in new tab
  13. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal. B Environ. 83 (2008) 140-149, https://doi.org/10.1016/j.apcatb.2008.02. 011. open in new tab
  14. S. Popiel, T. Nalepa, D. Dzierzak, R. Stankiewicz, Z. Witkiewicz, Rate of dibutylsul- fide decomposition by ozonation and the O3/H2O2 advanced oxidation process, J. Hazard. Mater. 164 (2009) 1364-1371, https://doi.org/10.1016/j.jhazmat.2008. 09.049. open in new tab
  15. Y. Chu, D. Zhang, L. Liu, Y. Qian, L. Li, Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2anode: Kinetics, byproducts and biodegradability, J. Hazard. Mater. 252-253 (2013) 306-312, https://doi.org/10.1016/j.jhazmat.2013.03.018. open in new tab
  16. A. Long, Y. Lei, H. Zhang, Degradation of toluene by a selective ferrous ion acti- vated persulfate oxidation process, Ind. Eng. Chem. Res. 53 (2014) 1033-1039, https://doi.org/10.1021/ie402633n. open in new tab
  17. J. Kazumi, M.E. Caldwell, J.M. Suflita, D.R. Lovley, L.Y. Young, Anaerobic degra- dation of benzene in diverse environments, Environ. Sci. Technol. 31 (1997) 813-818, https://doi.org/10.1021/es960506a. open in new tab
  18. C. Liang, Y.Y. Guo, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol. 44 (2010) 8203-8208, https://doi.org/10.1021/es903411a. open in new tab
  19. P.S. Majumder, S.K. Gupta, Hybrid reactor for priority pollutant nitrobenzene re- moval, Water Res. 37 (2003) 4331-4336, https://doi.org/10.1016/S0043- 1354(03)00436-6. open in new tab
  20. S.I. Mulla, R.S. Hoskeri, Y.S. Shouche, H.Z. Ninnekar, Biodegradation of 2-Nitro- toluene by Micrococcus sp. strain SMN-1, Biodegradation 22 (2011) 95-102, https: //doi.org/10.1007/s10532-010-9379-3. open in new tab
  21. W.H. Glaze, J. Kangt, Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor, Ind. Eng. Chem. Res. 28 (1989) 1580-1587, https://doi.org/10.1021/ ie00095a002. open in new tab
  22. M. Litter, Introduction to photochemical advanced oxidation processes for water treatment, in: P. Boule, D.W. Bahnemann, P.K.J. Robertson (Eds.), Environ. Pho- tochem. Part II, Springer Berlin Heidelberg, 2005, pp. 325-366, https://doi.org/ 10.1007/b89482. open in new tab
  23. D. Shahidi, R. Roy, A. Azzouz, Advances in catalytic oxidation of organic pollu- tants -prospects for thorough mineralization by natural clay catalysts, Appl. Catal. B Environ. 174-175 (2015) 277-292, https://doi.org/10.1016/j.apcatb.2015.02. 042. open in new tab
  24. N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, H.S. Ali, B. Murtaza, H.M. Khan, M. Imran, N. Muhammad, Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O8 2-, Chem. Eng. J. 356 (2019) 199-209, https://doi.org/10.1016/j.cej.2018.09.009. open in new tab
  25. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Ad- vanced oxidation processes for wastewater treatment: state of the art, Water. Air. Soil Pollut. 205 (2010) 187-204, https://doi.org/10.1007/s11270-009-0065-1. open in new tab
  26. M. Sayed, M. Gul, N.S. Shah, J.A. Khan, Z. Ul, H. Khan, F. Rehman, A.R. Khan, S. Rauf, H. Arandiyan, C.P. Yang, In-situ dual applications of ionic liquid coated Co2+ and Fe3+ co-doped TiO2: superior photocatalytic degradation of ofloxacin at pilot scale level and enhanced peroxidase like activity for calorimetric biosens- ing, J. Mol. Liq. 282 (2019) 275-285, https://doi.org/10.1016/j.molliq.2019.03. 022. open in new tab
  27. M. Sayed, A. Arooj, N.S. Shah, J.A. Khan, L.A. Shah, F. Rehman, H. Arandiyan, A.M. Khan, A.R. Khan, Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach, J. Mol. Liq. 272 (2018) 403-412, https://doi.org/10.1016/j.molliq.2018.09.102. open in new tab
  28. N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, A.D. Rizwan, N. Muhammad, G. Boczkaj, B. Murtaza, M. Imran, H.M. Khan, G. Zaman, Solar light driven degrada- tion of norfloxacin using as-synthesized Bi3+and Fe2+co-doped ZnO with the ad- dition of HSO5−: toxicities and degradation pathways investigation, Chem. Eng. J. 351 (2018) 841-855, https://doi.org/10.1016/j.cej.2018.06.111. open in new tab
  29. Z.S. Seddigi, A. Bumajdad, S.P. Ansari, S.a. Ahmed, E.Y. Danish, N.H. Yarkandi, S. Ahmed, Preparation and characterization of Pd doped ceria-ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation, J. Hazard. Mater. 264 (2014) 71-78, https://doi.org/10.1016/j.jhazmat.2013.10.070. open in new tab
  30. B. Murtaza, N.S. Shah, M. Sayed, J. Ali, M. Imran, M. Shahid, Z. Ul, H. Khan, A. Ghani, G. Murtaza, N. Muhammad, M. Sha, N. Khan, Synergistic effects ofbismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution, Sci. Total Environ. 669 (2019) 333-341, https://doi.org/10.1016/j.scitotenv.2019.03.062. open in new tab
  31. F.H. Margha, M.S. Abdel-Wahed, T.A. Gad-Allah, Nanocrystalline Bi2O3-B2O3- (MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation, Ceram. Int. 41 (2015) 5670-5676, https://doi.org/10.1016/j.ceramint.2014.12.152. open in new tab
  32. R. Darvishi, C. Soltani, M. Mashayekhi, M. Naderi, G. Boczkaj, S. Jorfi, M. Safari, Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst, Ultrason. - Sonochem. 55 (2019) 117-124, https://doi.org/10.1016/j.ultsonch.2019.03.009. open in new tab
  33. R. Mirzaee, R. Darvishi, C. Soltani, A. Khataee, G. Boczkaj, Combination of air-dis- persion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostruc open in new tab
  34. A. Fernandes et al. Separation and Purification Technology xxx (xxxx) xxx-xxx tures to degrade paracetamol under ultrasonic irradiation, J. Mol. Liq. 284 (2019) 536-546, https://doi.org/10.1016/j.molliq.2019.04.033. open in new tab
  35. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem. 19 (2013) 1761-1769, https://doi.org/10.1016/j.jiec.2013.07.012. open in new tab
  36. K.H. Kim, S.K. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review, J. Hazard. Mater. 186 (2011) 16-34, https://doi.org/10.1016/j.jhazmat.2010.11.011. open in new tab
  37. L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: catalysts activity, J. Hazard. Mater. 162 (2009) 588-606, https://doi.org/10.1016/j.jhazmat.2008.05.115. open in new tab
  38. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res. 88 (2016) 428-448, https://doi.org/10.1016/j.watres.2015.09.045. open in new tab
  39. A.L. Mota, L.F. Albuquerque, L.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr, C.A. Nascimento, Advanced oxidation processes and their application in the petro- leum industry: a review, Brazilian J. Pet. Gas. 2 (2009) 122-142 http://www. portalabpg.org.br/bjpg/index.php/bjpg/article/view/57.
  40. A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, An overview on the ad- vanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int. 75 (2015) 33-51, https: //doi.org/10.1016/j.envint.2014.10.027. open in new tab
  41. T.A. Kurniawan, L. Yanyan, T. Ouyang, A.B. Albadarin, G. Walker, BaTiO 3 /TiO 2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV-vis irradiation, Mater. Sci. Semicond. Process. 73 (2018) 42-50, https://doi.org/10.1016/j.mssp.2017.06.048. open in new tab
  42. M. Tammaro, V. Fiandra, M.C. Mascolo, A. Salluzzo, C. Riccio, A. Lancia, Photocat- alytic degradation of atenolol in aqueous suspension of new recyclable catalysts based on titanium dioxide, J. Environ. Chem. Eng. 5 (2017) 3224-3234, https:// doi.org/10.1016/j.jece.2017.06.026. open in new tab
  43. G. Boczkaj, A. Fernandes, Wastewater treatment by means of Advanced Oxidation Processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633, https://doi.org/10.1016/j.cej.2017.03.084. open in new tab
  44. M. Goel, H. Hongqiang, A.S. Mujumdar, M.B. Ray, Sonochemical decomposition of volatile and non-volatile organic compounds -a comparative study, Water Res. 38 (2004) 4247-4261, https://doi.org/10.1016/j.watres.2004.08.008. open in new tab
  45. S.B. Kim, S.C. Hong, Kinetic study for photocatalytic degradation of volatile or- ganic compounds in air using thin film TiO2 photocatalyst, Appl. Catal. B Environ. 35 (2002) 305-315, https://doi.org/10.1016/S0926-3373(01)00274-0. open in new tab
  46. H.-H. Cheng, C.-C. Hsieh, Removal of aromatic volatile organic compounds in the sequencing batch reactor of petroleum refinery wastewater treatment plant, CLEAN -Soil, Air, Water. 41 (2013) 765-772, https://doi.org/10.1002/clen. 201100112. open in new tab
  47. Y.-S. Shen, Y. Ku, Treatment of gas-phase volatile organic compounds (VOCs) by the process, Chemosphere 38 (1999) 1855-1866, https://doi.org/10.1016/S0045- 6535(98)00400-7. open in new tab
  48. R.M. Alberici, W.F. Jardim, Photocatalytic destruction of VOCS in the gas-phase using titanium dioxide, Appl. Catal. B Environ. 14 (1997) 55-68, https://doi.org/ 10.1016/S0926-3373(97)00012-X. open in new tab
  49. A. Fernandes, P. Makoś, J.A. Khan, G. Boczkaj, Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based ad- vanced oxidation processes, J. Clean. Prod. 208 (2019) 54-64, https://doi.org/10. 1016/j.jclepro.2018.10.081. open in new tab
  50. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid microex- traction and gas chromatography-mass spectrometry (DLLME-GC-MS) for the de- termination of oxygenated volatile organic compounds in effluents from the pro- duction of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. open in new tab
  51. P. Makoś, A. Fernandes, G. Boczkaj, Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with GC-MS, J. Sep. Sci. (2018) 1-25, https://doi.org/10.1002/jssc.201701464. open in new tab
  52. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analy- sis, J. Chromatogr. A 1555 (2018) 10-19, https://doi.org/10.1016/j.chroma.2018. 04.054. open in new tab
  53. R. Alnaizy, A. Akgerman, Advanced oxidation of phenolic compounds, Adv. Envi- ron. Res. 4 (2000) 233-244, https://doi.org/10.1016/S1093-0191(00)00024-1. open in new tab
  54. L. Zhao, J. Ma, Z.zhong. Sun, Oxidation products and pathway of ceramic honey- comb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution, Appl. Catal. B Environ. 79 (2008) 244-253, https://doi.org/10.1016/j.apcatb. 2007.10.026. open in new tab
  55. B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensi- tized by iron-titania binary photocatalysts, J. Mol. Catal. A: Chem. 169 (2001) 147-155, https://doi.org/10.1016/S1381-1169(00)00549-5. open in new tab
  56. S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to the analysis of ad- vanced oxidation process (AOP) degradation of dye products and reaction mecha- nisms, TrAC -Trends Anal. Chem. 49 (2013) 31-44, https://doi.org/10.1016/j. trac.2013.03.011. open in new tab
  57. J. Fenoll, M. Martínez-Menchón, G. Navarro, N. Vela, S. Navarro, Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor sus- pensions exposed to solar energy, Chemosphere 91 (2013) 571-578, https://doi. org/10.1016/j.chemosphere.2012.11.067. open in new tab
  58. M. Cristina Yeber, J. Rodrıǵuez, J. Freer, N. Durán, H.D. Mansilla, Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO, Chemos- phere 41 (2000) 1193-1197, https://doi.org/10.1016/S0045-6535(99)00551-2. open in new tab
  59. U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder, Desalination 263 (2010) 176-182, https://doi.org/10.1016/j.desal.2010.06.055. open in new tab
  60. Z. Zhou, P. Zhang, Y. Lin, E. Ashalley, H. Ji, J. Wu, H. Li, Z. Wang, Microwave fab- rication of Cu2ZnSnS4nanoparticle and its visible light photocatalytic properties, Nanoscale Res. Lett. 9 (2014) 1-6, https://doi.org/10.1186/1556-276X-9-477. open in new tab
  61. E. Ra, Advances in photo-catalytic materials for environmental applications, J. Mater. Sci. 4 (2016) 26-50. open in new tab
  62. H. Zangeneh, a.a.L. Zinatizadeh, M. Feizy, A comparative study on the perfor- mance of different advanced oxidation processes (UV/O3/H2O2) treating linear alkyl benzene (LAB) production plant's wastewater, J. Ind. Eng. Chem. 20 (2014) 1453-1461, https://doi.org/10.1016/j.jiec.2013.07.031. open in new tab
  63. O. Gimeno, F.J. Rivas, F.J. Beltrán, M. Carbajo, Photocatalytic ozonation of winery wastewaters, J. Agric. Food Chem. 55 (2007) 9944-9950, https://doi.org/10. 1021/jf072167i. open in new tab
  64. M. Novak, G.M. Loudon, The pKa of acetophenone in aqueous solution, J. Org. Chem. 42 (1977) 2494-2498, https://doi.org/10.1021/jo00434a032. open in new tab
  65. (2017) Engineering ToolBox, Phenols, alcohols and carboxylic acids -pKa values., n.d. https://www.engineeringtoolbox.com/paraffinic-benzoic-hydroxy-dioic-acids- structure-pka-carboxylic-dissociation-constant-alcohol-phenol-d_1948.html (ac- cessed August 17, 2018). open in new tab
  66. (2017) Engineering ToolBox, Amines, diamines and cyclic organic nitrogen com- pounds -pKa values, n.d. https://www.engineeringtoolbox.com/amine-diamine- pyridine-cyclic-quinoline-aminobenzene-structure-pka-carboxylic-dissociation- constant-d_1949.html (accessed August 17, 2018). open in new tab
  67. J.A. Navio, M. Garcia Gómez, M.A. Pradera Adrian, J. Fuentes Mota, Partial or complete heterogeneous photocatalytic oxidation of neat toluene and 4-picoline in liquid organic oxygenated dispersions containing pure or iron-doped titania photo- catalysts, J. Mol. Catal. A: Chem. 104 (1996) 329-339, https://doi.org/10.1016/ 1381-1169(95)00155-7. open in new tab
  68. C.K. Chua, M. Pumera, Influence of methyl substituent position on redox properties of nitroaromatics related to 2,4,6-trinitrotoluene, Electroanalysis 23 (2011) 2350-2356, https://doi.org/10.1002/elan.201100359. open in new tab
  69. A.S. Borovik, S.G. Bott, A.R. Barron, Hydrogen/deuterium exchange catalyzed by an unusually stable mercury ± toluene complex, Angew. Chem. Int. Ed. Engl. 39 (2000) 4117-4118. open in new tab
  70. K.H. Wang, Y.H. Hsieh, M.Y. Chou, C.Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B Environ. 21 (1999) 1-8, https://doi.org/10.1016/S0926- 3373(98)00116-7. open in new tab
  71. G.W. Wheland, J. Farr, Acid strengths of aliphatic nitro compounds, J. Am. Chem. Soc. 65 (1943), 1433-1433. open in new tab
  72. C.B. Menon, E. Buncel, Hydrogenolysis of organometallics and the acidity of hy- drogen, Can. J. Chem. 54 (1976) 3949-3954.
  73. J.R. Baker, M.W. Milke, J.R. Mihelcic, Relationship between chemical and theoreti- cal oxygen demand for specific classes of organic chemicals, Water Res. 33 (1999) 327-334, https://doi.org/10.1016/S0043-1354(98)00231-0. open in new tab
  74. M.O. Buffle, U. Von Gunten, Phenols and amine induced HO• generation during the initial phase of natural water ozonation, Environ. Sci. Technol. 40 (2006) 3057-3063, https://doi.org/10.1021/es052020c. open in new tab
  75. S. Soltan, H. Jafari, S. Afshar, O. Zabihi, Enhancement of photocatalytic degrada- tion of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials, Water Sci. Technol. 74 (2016) 1689-1697, https://doi. org/10.2166/wst.2016.343. open in new tab
  76. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous photo- catalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn. 58 (1985) 2015-2022, https://doi.org/10.1246/bcsj.58.2015. open in new tab
  77. E.R.L. Tiburtius, P. Peralta-Zamora, A. Emmel, Treatment of gasoline-contaminated waters by advanced oxidation processes, J. Hazard. Mater. 126 (2005) 86-90, https://doi.org/10.1016/j.jhazmat.2005.06.003. open in new tab
  78. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of ef- fluents from production of bitumens under basic pH conditions using hydrody- namic cavitation aided by external oxidants, Ultrason. Sonochem. 40 (2018) 969-979, https://doi.org/10.1016/j.ultsonch.2017.08.032. open in new tab
  79. M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultra- son. Sonochem. 45 (2018) 257-266, https://doi.org/10.1016/j.ultsonch.2018.03. 013. open in new tab
  80. M. Gagol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation -a review, Chem. Eng. J. 338 (2018) 599-627, https://doi.org/10.1016/j.cej.2018.01.049. open in new tab
  81. D. Vione, V. Maurino, C. Minero, M. Lucchiari, Nitration and hydroxylation of ben- zene in the presence of nitrite/nitrous acid in aqueous solution, Chemosphere 56 (2004) 1049-1059, https://doi.org/10.1016/j.chemosphere.2004.05.027. open in new tab
  82. D. Borghesi, D. Vione, V. Maurino, C. Minero, Transformations of benzene photoin- duced by nitrate salts and iron oxide, J. Atmos. Chem. 52 (2005) 259-281, https:// doi.org/10.1007/s10874-005-5304-2. open in new tab
  83. D. Vione, V. Maurino, C. Minero, E. Pelizzetti, Phenol photonitration upon UV irra- diation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol, Chemos- phere 45 (2001) 893-902, https://doi.org/10.1016/S0045-6535(01)00035-2. open in new tab
  84. A. Fernandes et al. Separation and Purification Technology xxx (xxxx) xxx-xxx
  85. A.E. Gekhman, I.P. Stolyarov, A.F. Shestakov, A.E. Shilov, I.I. Moiseev, Oxidation of molecular nitrogen with hydrogen peroxide, Russ. Chem. Bull. Int.Ed. 52 (2003) 768-770. open in new tab
  86. R. Ameta, A. Kumar, P.B. Punjabi, S.C. Ameta, Advanced oxidation processes: ba- sics and principles, in: D.G. Rao, R. Senthilkumar, J. Anthony Byrne (Eds.), Waste- water Treat. Adv. Process. Technol., 2013th ed., CRC Press and IWA Publishing, USA, 2013, pp. 61-107, https://doi.org/10.1007/s13398-014-0173-7.2. open in new tab
  87. Z. Chen, X. Yu, X. Huang, S. Zhang, Prediction of reaction rate constants of hy- droxyl radical with organic compounds, J. Chil. Chem. Soc. 59 (2014) 2252-2259, https://doi.org/10.4067/S0717-97072014000100003. open in new tab
  88. H. Suzuki, S. Araki, H. Yamamoto, Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water, J. Water Process Eng. 7 (2015) 54-60, https://doi.org/10.1016/j.jwpe.2015.04.011. open in new tab
  89. M.H.M.T. Assumpção, R.F.B. De Souza, R.M. Reis, R.S. Rocha, J.R. Steter, P. Ham- mer, I. Gaubeur, M.L. Calegaro, M.R.V. Lanza, M.C. Santos, Low tungsten content of nanostructured material supported on carbon for the degradation of phenol, Appl. Catal. B Environ. 142-143 (2013) 479-486, https://doi.org/10.1016/j. apcatb.2013.05.024. open in new tab
  90. V.S. Mohite, M.A. Mahadik, S.S. Kumbhar, Y.M. Hunge, J.H. Kim, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2thin films, J. Photochem. Photobiol. B Biol. 142 (2015) 204-211, https://doi.org/10.1016/j.jphotobiol.2014.12.004. open in new tab
  91. B. Roig, C. Gonzalez, O. Thomas, Monitoring of phenol photodegradation by ultra v iolet spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 59 (2003) 303-307. open in new tab
  92. O. Spalek, J. Balej, I. Paseka, Kinetics of the decomposition of hydrogen peroxide in alkaline solutions, J. Chem. Soc. Faraday Trans. 78 (1982) 2349, https://doi. org/10.1039/f19827802349. open in new tab
  93. G. Boczkaj, A. Fernandes, M. Gągol, Studies on treatment of bitumen effluents by means of advanced oxidation processes (AOPs) in basic pH conditions, in: G. Man- nina (Ed.), Front. Wastewater Treat. Model. FICWTM 2017. Lect. Notes Civ. Eng., Springer, 2017, pp. 331-336, https://doi.org/10.1007/978-3-319-58421-8. open in new tab
  94. P.P. EUWID, Upward spiral in titanium dioxide prices slowing in second quarter, EUWID Pulp Pap. 20/2018, 2018. https://www.euwid-paper.com/news/ singlenews/Artikel/upward-spiral-in-titanium-dioxide-prices-slowing-in-second- quarter.html (accessed November 21, 2018). open in new tab
  95. P.P. EUWID, Titanium dioxide prices left untouched in Q3, EUWID Pulp Pap. 34/ 2018, 2018. 3. https://www.euwid-paper.com/news/singlenews/Artikel/titanium- dioxide-prices-left-untouched-in-q3.html (accessed November 21, 2018). open in new tab
Verified by:
Gdańsk University of Technology

seen 243 times

Recommended for you

Meta Tags