Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents - Publication - Bridge of Knowledge

Search

Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents

Abstract

Different types of photolytic and photocatalytic advanced oxidation processes (AOPs) were used for treatment of refinery effluents from bitumen production. The treatment efficiency was evaluated by analyzing chemical oxygen demand (COD), biological oxygen demand (BOD5), volatile organic compounds (VOCs) and sulfide ions concentration. The studies revealed a synergistic effect of application of external oxidants (O3, H2O2, O3/H2O2) with TiO2 and UV applied for improved COD and BOD5 reduction as well as the degradation of the VOCs present in the effluents. Among studied processes a photocatalytic process combined with peroxone (TiO2/UV/O3/H2O2) was the optimal and the most economical technology. It allows to reduce 38 and 32% of COD and BOD5 respectively and degrade 84% of total VOCs in 280 min of treatment. At this conditions the reduced COD exceeds over 30% a theoretical value based on the dose of oxidants, which proves the importance of photocatalysis in the developed technology. The sulfide ions were completely depleted in all experiments in the first 30 min of treatment. The addition of TiO2 in the AOPs technology revealed a decrease in the process cost using less amount of chemicals achieving similar treatment efficiency when comparing with photolytic and non-catalytic technologies. The application of these technologies can be conducted in two alternative scenarios; whether to deplete the sulfides ions concentration or to maximize the treatment efficiency. In both options, the technologies studied are promising as a pre-treatment before other types of AOPs effective at neutral/acidic pH values or before a biological treatment stage. Further studies should be developed, by scaling up the process to a pilot scale in a real case scenario to check the possibility of its implementation in the industrial practice.

Citations

  • 1 1 9

    CrossRef

  • 0

    Web of Science

  • 1 3 3

    Scopus

Cite as

Full text

download paper
downloaded 178 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CHEMICAL ENGINEERING JOURNAL no. 391,
ISSN: 1385-8947
Language:
English
Publication year:
2020
Bibliographic description:
Fernandes A., Makoś P., Wang Z., Boczkaj G.: Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents// CHEMICAL ENGINEERING JOURNAL -Vol. 391, (2020), s.123488-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.cej.2019.123488
Bibliography: test
  1. A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, C.A.O. Nascimento, Advanced oxidation processes and their application in the petroleum industry: a review, Br. J. Pet. Gas. 2 (2009) 122-142 http://www. portalabpg.org.br/bjpg/index.php/bjpg/article/view/57.
  2. F. Autelitano, F. Giuliani, Analytical assessment of asphalt odor patterns in hot mix asphalt production, J. Clean. Prod. 172 (2018) 1212-1223, https://doi.org/10. 1016/j.jclepro.2017.10.248. open in new tab
  3. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic com- pounds emission profiles from hot road bitumens, Chemosphere 107 (2014) 23-30, https://doi.org/10.1016/j.chemosphere.2014.02.070. open in new tab
  4. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 56 (2014) 1503-1514. open in new tab
  5. I. Ben Hariz, A. Halleb, N. Adhoum, L. Monser, Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation, Sep. Purif. Technol. 107 (2013) 150-157, https://doi.org/10.1016/j.seppur.2013.01.051. open in new tab
  6. C.E. Santo, V.J.P. Vilar, C.M.S. Botelho, A. Bhatnagar, E. Kumar, R.A.R. Boaventura, Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant, Chem. Eng. J. 183 (2012) 117-123, https://doi.org/10.1016/j.cej.2011.12.041. open in new tab
  7. L. Yan, H. Ma, B. Wang, W. Mao, Y. Chen, Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation, J. Hazard. Mater. 178 (2010) 1120-1124, https://doi.org/10.1016/j.jhazmat.2010.01.104. open in new tab
  8. G.T. Tellez, N. Nirmalakhandan, J.L. Gardea-Torresdey, Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water, Adv. Environ. Res. 6 (2002) 455-470, https://doi.org/10.1016/ S1093-0191(01)00073-9. open in new tab
  9. H.-H. Cheng, C.-C. Hsieh, Removal of aromatic volatile organic compounds in the sequencing batch reactor of petroleum refinery wastewater treatment plant, CLEAN -Soil Air Water 41 (2013) 765-772, https://doi.org/10.1002/clen.201100112. open in new tab
  10. A. Coelho, A.V. Castro, M. Dezotti, G.L. Santanna, Treatment of petroleum refinery sourwater by advanced oxidation processes, J. Hazard. Mater. 137 (2006) 178-184, https://doi.org/10.1016/j.jhazmat.2006.01.051. open in new tab
  11. K.H. Kim, S.K. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review, J. Hazard. Mater. 186 (2011) 16-34, https://doi.org/10.1016/j.jhazmat.2010.11.011. open in new tab
  12. M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J. 263 (2015) 209-219, https:// doi.org/10.1016/j.cej.2014.10.112. open in new tab
  13. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem. 19 (2013) 1761-1769, https://doi.org/10.1016/j.jiec.2013.07.012. open in new tab
  14. S. Munirasu, M.A. Haija, F. Banat, Use of Membrane technology for oil field and A. Fernandes, et al. Chemical Engineering Journal xxx (xxxx) xxxx refinery produced water treatment-A review, Process Saf. Environ. Prot. (2016), https://doi.org/10.1016/j.psep.2016.01.010. open in new tab
  15. M. Bahri, A. Mahdavi, A. Mirzaei, A. Mansouri, F. Haghighat, Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: a review, Chem. Eng. Process. -Process Intensif. 125 (2018) 183-196, https://doi. org/10.1016/j.cep.2018.02.002. open in new tab
  16. M.K. Vineyard, Method and apparatus for pretreatment of wastewater streams by chemical oxidation, US patent 09/902,747, 2003.
  17. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956, https://doi.org/10.1002/jssc.201600608. open in new tab
  18. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid micro- extraction and gas chromatography-mass spectrometry (DLLME-GC-MS) for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. open in new tab
  19. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the ex- amination of the degradation of volatile organonitrogen compounds during the treatment of industrial effluents, J. Sep. Sci. (2017) 1-9, https://doi.org/10.1002/ jssc.201601237. open in new tab
  20. M. Talei, D. Mowla, F. Esmaeilzadeh, Ozonation of an effluent of oil refineries for COD and sulfide removal, Desalin. Water Treat. 56 (2015) 1648-1656, https://doi. org/10.1080/19443994.2014.951968. open in new tab
  21. G. Boczkaj, A. Fernandes, P. Makoś, Study of different advanced oxidation processes for wastewater treatment from petroleum bitumen production at basic pH, Ind. Eng. Chem. Res. 56 (2017) 8806-8814, https://doi.org/10.1021/acs.iecr.7b01507. open in new tab
  22. A. Fernandes, P. Makos, G. Boczkaj, Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions, J. Clean. Prod. 195 (2018) 374-384, https://doi.org/10.1016/j.jclepro. 2018.05.207. open in new tab
  23. L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: catalysts activity, J. Hazard. Mater. 162 (2009) 588-606, https://doi.org/10.1016/j.jhazmat.2008.05.115. open in new tab
  24. A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, An overview on the ad- vanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int. 75 (2015) 33-51, https://doi.org/10.1016/j.envint.2014.10.027. open in new tab
  25. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various ad- vanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater. 149 (2007) 609-614, https://doi.org/10.1016/j.jhazmat.2007.06. 111. open in new tab
  26. T.A. Kurniawan, L. Yanyan, T. Ouyang, A.B. Albadarin, G. Walker, BaTiO 3 /TiO 2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV-vis irradiation, Mater. Sci. Semicond. Process. 73 (2018) 42-50, https://doi.org/10.1016/j.mssp.2017.06.048. open in new tab
  27. M. Tammaro, V. Fiandra, M.C. Mascolo, A. Salluzzo, C. Riccio, A. Lancia, Photocatalytic degradation of atenolol in aqueous suspension of new recyclable catalysts based on titanium dioxide, J. Environ. Chem. Eng. 5 (2017) 3224-3234, https://doi.org/10.1016/j.jece.2017.06.026. open in new tab
  28. J. Araña, E. Pulido Melián, V.M. Rodríguez López, A. Peña Alonso, J.M. Doña Rodríguez, O. González Díaz, J. Pérez Peña, Photocatalytic degradation of phenol and phenolic compounds. Part I. Adsorption and FTIR study, J. Hazard. Mater. 146 (2007) 520-528, https://doi.org/10.1016/j.jhazmat.2007.04.066. open in new tab
  29. E.S. Elmolla, M. Chaudhuri, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process, J. Hazard. Mater. 173 (2010) 445-449, https://doi.org/10.1016/j.jhazmat.2009.08.104. open in new tab
  30. M. Buyukada, Removal, potential reaction pathways, and overall cost analysis of various pollution parameters and toxic odor compounds from the effluents of turkey processing plant using TiO2-assisted UV/O3 process, J. Environ. Manage. 248 (2019) 109298, , https://doi.org/10.1016/j.jenvman.2019.109298. open in new tab
  31. N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, A.D. Rizwan, N. Muhammad, G. Boczkaj, B. Murtaza, M. Imran, H.M. Khan, G. Zaman, Solar light driven de- gradation of norfloxacin using as-synthesized Bi3+and Fe2+co-doped ZnO with the addition of HSO5−: toxicities and degradation pathways investigation, Chem. Eng. J. 351 (2018) 841-855, https://doi.org/10.1016/j.cej.2018.06.111. open in new tab
  32. J.A. Navio, M. Garcia Gómez, M.A. Pradera Adrian, J. Fuentes Mota, Partial or complete heterogeneous photocatalytic oxidation of neat toluene and 4-picoline in liquid organic oxygenated dispersions containing pure or iron-doped titania pho- tocatalysts, J. Mol. Catal. A: Chem. 104 (1996) 329-339, https://doi.org/10.1016/ 1381-1169(95)00155-7. open in new tab
  33. M. Sayed, A. Arooj, N.S. Shah, J.A. Khan, L.A. Shah, F. Rehman, H. Arandiyan, A.M. Khan, A.R. Khan, Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach, J. Mol. Liq. 272 (2018) 403-412, https://doi.org/10.1016/j.molliq.2018.09.102. open in new tab
  34. M. Sayed, M. Gul, N.S. Shah, J.A. Khan, Z. Ul, H. Khan, F. Rehman, A.R. Khan, S. Rauf, H. Arandiyan, C.P. Yang, In-situ dual applications of ionic liquid coated Co2+ and Fe3+ co-doped TiO2: superior photocatalytic degradation of ofloxacin at pilot scale level and enhanced peroxidase like activity for calorimetric biosen- sing, J. Mol. Liq. 282 (2019) 275-285, https://doi.org/10.1016/j.molliq.2019.03. 022. open in new tab
  35. R. Darvishi, C. Soltani, M. Mashayekhi, M. Naderi, G. Boczkaj, S. Jorfi, M. Safari, Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst, Ultrason. - Sonochemistry. 55 (2019) 117-124, https://doi.org/10.1016/j.ultsonch.2019.03. 009. open in new tab
  36. D. Shahidi, R. Roy, A. Azzouz, Advances in catalytic oxidation of organic pollutants -Prospects for thorough mineralization by natural clay catalysts, Appl. Catal. B Environ. 174-175 (2015) 277-292, https://doi.org/10.1016/j.apcatb.2015.02.042. open in new tab
  37. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art, Water Air Soil Pollut. 205 (2010) 187-204, https://doi.org/10.1007/s11270-009-0065-1. open in new tab
  38. S. Soltan, H. Jafari, S. Afshar, O. Zabihi, Enhancement of photocatalytic degrada- tion of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials, Water Sci. Technol. 74 (2016) 1689-1697, https://doi. org/10.2166/wst.2016.343. open in new tab
  39. B. Murtaza, N.S. Shah, M. Sayed, J. Ali, M. Imran, M. Shahid, Z. Ul, H. Khan, A. Ghani, G. Murtaza, N. Muhammad, M. Sha, N. Khan, Synergistic effects of bis- muth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution, Sci. Total Environ. 669 (2019) 333-341, https://doi.org/10.1016/j.scitotenv.2019.03.062. open in new tab
  40. F.H. Margha, M.S. Abdel-Wahed, T.A. Gad-Allah, Nanocrystalline Bi2O3-B2O3- (MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation, Ceram. Int. 41 (2015) 5670-5676, https://doi.org/10.1016/j.ceramint.2014.12.152. open in new tab
  41. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process, J. Hazard. Mater. 309 (2016) 87-96, https://doi.org/10.1016/j.jhazmat. 2016.01.023. open in new tab
  42. G. Li, Y. Lu, C. Lu, M. Zhu, C. Zhai, Y. Du, P. Yang, Efficient catalytic ozonation of bisphenol-A over reduced graphene oxide modified sea urchin-like α-MnO2 archi- tectures, J. Hazard. Mater. 294 (2015) 201-208, https://doi.org/10.1016/j. jhazmat.2015.03.045. open in new tab
  43. R. Mirzaee, R. Darvishi, C. Soltani, A. Khataee, G. Boczkaj, Combination of air- dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanos- tructures to degrade paracetamol under ultrasonic irradiation, J. Mol. Liq. 284 (2019) 536-546, https://doi.org/10.1016/j.molliq.2019.04.033. open in new tab
  44. N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, H.S. Ali, B. Murtaza, H.M. Khan, M. Imran, N. Muhammad, Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O8 2-, Chem. Eng. J. 356 (2019) 199-209, https://doi.org/10.1016/j.cej.2018.09.009. open in new tab
  45. X. Chen, W.-D. Oh, T.-T. Lim, Graphene-and CNTs-based carbocatalysts in per- sulfates activation: material design and catalytic mechanisms, Chem. Eng. J. 354 (2018) 941-976, https://doi.org/10.1016/j.cej.2018.08.049. open in new tab
  46. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res. 88 (2016) 428-448, https://doi.org/10.1016/j.watres.2015.09.045. open in new tab
  47. R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/ TiO2photocatalytic oxidation process, Korean J. Chem. Eng. 25 (2008) 64-72, https://doi.org/10.1007/s11814-008-0011-8. open in new tab
  48. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process. 42 (2016) 2-14, https://doi. org/10.1016/j.mssp.2015.07.052. open in new tab
  49. K. Nakata, A. Fujishima, TiO2photocatalysis: design and applications, J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169-189, https://doi.org/10. 1016/j.jphotochemrev.2012.06.001. open in new tab
  50. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633, https://doi.org/10.1016/j.cej.2017.03.084. open in new tab
  51. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919-9986, https://doi.org/10.1021/cr5001892. open in new tab
  52. R.L. Ziolli, W.F. Jardim, Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2, J. Photochem. Photobiol. A Chem. 147 (2002) 205-212, https://doi.org/10.1016/S1010- 6030(01)00600-1. open in new tab
  53. C. Chen, J. Yu, B.A. Yoza, Q.X. Li, G. Wang, A novel "wastes-treat-wastes" tech- nology: role and potential of spent fluid catalytic cracking catalyst assisted ozo- nation of petrochemical wastewater, J. Environ. Manage. 152 (2015) 58-65, https://doi.org/10.1016/j.jenvman.2015.01.022. open in new tab
  54. J. Saien, H. Nejati, Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions, J. Hazard. Mater. 148 (2007) 491-495, https://doi.org/10.1016/j.jhazmat.2007.03.001. open in new tab
  55. J. Saien, F. Shahrezaei, Organic pollutants removal from petroleum refinery was- tewater with nano titania photocatalyst and UV light emission, Int. J. Photoenergy 2012 (2012) 1-5, https://doi.org/10.1155/2012/703074. open in new tab
  56. W.Z. Khan, I. Najeeb, M. Tuiyebayeva, Z. Makhtayeva, Refinery wastewater de- gradation with titanium dioxide, zinc oxide, and hydrogen peroxide in a photo- catalytic reactor, Process Saf. Environ. Prot. 94 (2015) 479-486, https://doi.org/ 10.1016/j.psep.2014.10.007. open in new tab
  57. P. Stepnowski, E.M. Siedlecka, P. Behrend, B. Jastorff, Enhanced photo-degradation of contaminants in petroleum refinery wastewater, Water Res. 36 (2002) 2167-2172. open in new tab
  58. F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari, Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol. 221 (2012) 203-212, https:// doi.org/10.1016/j.powtec.2012.01.003. open in new tab
  59. D.A.D.A. Aljuboury, P. Palaniandy, H.B.A. Aziz, S. Feroz, S.S.A. Amr, Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst, Water Sci. Technol. 74 (2016) 1312-1325, https://doi. org/10.2166/wst.2016.293. open in new tab
  60. J.J. Rueda-Márquez, I. Levchuk, I. Salcedo, A. Acevedo-Merino, M.A. Manzano, Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 open in new tab
  61. A. Fernandes, et al. Chemical Engineering Journal xxx (xxxx) xxxx open in new tab
  62. photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance, Water Res. 91 (2016) 86-96, https://doi.org/10.1016/j.watres.2015.12.051. open in new tab
  63. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic ef- fect of adsorption for removal of dyes from waste water using photocatalytic pro- cess, J. Environ. Sci. (China) (2016) 1-22, https://doi.org/10.1016/j.jes.2017.03. 011. open in new tab
  64. J. Fenoll, M. Martínez-Menchón, G. Navarro, N. Vela, S. Navarro, Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor sus- pensions exposed to solar energy, Chemosphere 91 (2013) 571-578, https://doi. org/10.1016/j.chemosphere.2012.11.067. open in new tab
  65. U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6- trichlorophenol from water exploiting commercial ZnO powder, Desalination 263 (2010) 176-182, https://doi.org/10.1016/j.desal.2010.06.055. open in new tab
  66. M. Litter, Introduction to photochemical advanced oxidation processes for water treatment, in: P. Boule, D.W. Bahnemann, P.K.J. Robertson (Eds.), Environ. Photochem. Part II, Springer Berlin Heidelberg, 2005, pp. 325-366, , https://doi. org/10.1007/b89482. open in new tab
  67. H. Zangeneh, L. Zinatizadeh, M. Feizy, A comparative study on the performance of different advanced oxidation processes (UV/O3/H2O2) treating linear alkyl ben- zene (LAB) production plant's wastewater, J. Ind. Eng. Chem. 20 (2014) 1453-1461, https://doi.org/10.1016/j.jiec.2013.07.031. open in new tab
  68. P.S. Thind, D. Kumari, S. John, TiO 2/H 2 O 2 mediated UV photocatalysis of chlorpyrifos: optimization of process parameters using response surface metho- dology, J. Environ. Chem. Eng. (2017), https://doi.org/10.1016/j.jece.2017.05. 031. open in new tab
  69. B. Ohtani, S.-W. Zhang, S. Nishimoto, T. Kagiya, Catalytic and photocatalytic de- composition of ozone at room temperature over titanium (IV) oxide, J. Chem. Soc., Faraday Trans. 88 (1992) 1049, https://doi.org/10.1039/ft9928801049. open in new tab
  70. A. Fernandes, M. Gągol, P. Makoś, J.A. Khan, G. Boczkaj, Integrated photocatalytic advanced oxidation system (TiO 2 /UV/O 3 /H 2 O 2 )for degradation of volatile organic compounds, Sep. Purif. Technol. 224 (2019) 1-14, https://doi.org/10.1016/j. seppur.2019.05.012. open in new tab
  71. A. Hawari, H. Ramadan, I. Abu-Reesh, M. Ouederni, A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and ad- vanced oxidation, J. Environ. Manage. 151 (2015) 105-112, https://doi.org/10. 1016/j.jenvman.2014.12.038. open in new tab
  72. M. Peleg, The chemistry of ozone in the treatment of water, Water Res. 10 (1976) 361-365, https://doi.org/10.1016/0043-1354(76)90052-X. open in new tab
  73. M. Gągol, A. Przyjazny, G. Boczkaj, Effective method of treatment of industrial effluents under basic pH conditions using acoustic cavitation -a comprehensive comparison with hydrodynamic cavitation processes, Chem. Eng. Process. Process Intensif. 128 (2018) 103-113, https://doi.org/10.1016/j.cep.2018.04.010. open in new tab
  74. G. Samudro, S. Mangkoedihardjo, Review on bod, cod and bod/cod ratio: a triangle zone for toxic, biodegradable and stable levels, Int. Acad. Res. 2 (2010) 235-239.
  75. A. Fernandes, P. Makoś, J.A. Khan, G. Boczkaj, Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based ad- vanced oxidation processes, J. Clean. Prod. 208 (2019) 54-64, https://doi.org/10. 1016/j.jclepro.2018.10.081. open in new tab
  76. P.P. EUWID, Upward spiral in titanium dioxide prices slowing in second quarter, EUWID Pulp Pap. 20/2018. (2018). https://www.euwid-paper.com/news/ singlenews/Artikel/upward-spiral-in-titanium-dioxide-prices-slowing-in-second- quarter.html. (accessed November 21, 2018). open in new tab
  77. P.P. EUWID, Titanium dioxide prices left untouched in Q3, EUWID Pulp Pap. 34/ 2018. (2018) 3. https://www.euwid-paper.com/news/singlenews/Artikel/ titanium-dioxide-prices-left-untouched-in-q3.html. (accessed November 21, 2018). open in new tab
Verified by:
Gdańsk University of Technology

seen 217 times

Recommended for you

Meta Tags