Laboratoryjny bioreaktor z systemem kontroli pH do badań nad wytwarzaniem wodoru w procesie ciemnej fermentacji - Publication - Bridge of Knowledge

Search

Laboratoryjny bioreaktor z systemem kontroli pH do badań nad wytwarzaniem wodoru w procesie ciemnej fermentacji

Abstract

W pracy przedstawiono konstrukcję niskokosztowego bioreaktora badawczego wyposażonego w sys-tem kontroli i regulacji pH. Zaprezentowano jego wykorzystanie do badania produkcji wodoru w pro-cesie fermentacji ciemnej z zastosowaniem Enterobacter aerogenes ATCC 13048. W pracy porównano wyniki uzyskane przy prowadzeniu procesu bez i z regulacją pH dla różnych materiałów wsadowych: glukozy, hydrolizatów topoli energetycznej, serwatki kwaśnej i glicerolu. Wykazano, że wykorzystanie zaproponowanej konstrukcji bioreaktora do badania procesu fermentacji ciemnej jest w pełni zasadne i celowe. Zaobserwowano również, że zastosowanie regulacji pH powoduje wydłużenie fazy wzrostu wykładniczego o około 12 godzin, co pozwala na zwiększenie ilości wytworzonego wodoru.

Cite as

Full text

download paper
downloaded 224 times
Publication version
Accepted or Published Version
License
Copyright (© 2019 COBRABiD)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Aparatura Badawcza i Dydaktyczna no. 24, pages 38 - 46,
ISSN: 1426-9600
Language:
Polish
Publication year:
2019
Bibliographic description:
Szulczyński B., Kucharska K., Kamiński M. A.: Laboratoryjny bioreaktor z systemem kontroli pH do badań nad wytwarzaniem wodoru w procesie ciemnej fermentacji// Aparatura Badawcza i Dydaktyczna. -Vol. 24., iss. 1 (2019), s.38-46
Bibliography: test
  1. Rubio M. G. A., Jaojaruek K., Hydrogen -The Future Fuel, Adv Automob Eng, 4 (2015), 116. open in new tab
  2. Dincer I., Acar C., Review and evaluation of hydrogen production methods for better sustainabili- ty, Int J Hydrogen Energy, 40 (2015), 11094-11111. open in new tab
  3. Pakarinen O., Lehtomäki A., Rintala J., Batch dark fermentative hydrogen production from grass silage: The effect of inoculum, pH, temperature and VS ratio, Int J Hydrogen Energy, 33 (2008), 594-601. open in new tab
  4. Gadhe A., Sonawane S. S., Varma M. N., Enhanced biohydrogen production from dark fermenta- tion of complex dairy wastewater by sonolysis, Int J Hydrogen Energy, 40 (2015), 9942-9951. open in new tab
  5. Hu C. C., Giannis A., Chen C. L., Qi W., Wang J. Y., Comparative study of biohydrogen production by four dark fermentative bacteria, Int J Hydrogen Energy, 38 (2013), 15686-15692. open in new tab
  6. Reilly M., Dinsdale R., Guwy A., Mesophilic biohydrogen production from calcium hydroxide tre- ated wheat straw, Int J Hydrogen Energy, 39 (2014), 16891-16901. open in new tab
  7. Kucharska K., Łukajtis R., Słupek E., Cieśliński H., Rybarczyk P., Kamiński M., Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis, Molecules, 23 (2018), 1-21. open in new tab
  8. Łukajtis R., Rybarczyk P., Kucharska K., Konopacka-Łyskawa D., Słupek E., Wychodnik K., Kamiński M., Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre- -treatment and enzymatic hydrolysis, Energies, 11 (2018), 886. open in new tab
  9. Łukajtis R., Kucharska K., Hołowacz I., Rybarczyk P., Wychodnik K., Słupek E., Nowak P., Kamiński M., Comparison and optimization of saccharification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation, Energies, 11 (2018), 639. open in new tab
  10. Krishnan S., Singh L., Sakinah M., Thakur S., Nasrul M., Otieno A., Wahid Z. A., An investigation of two-stage thermophilic and mesophilic fermentation process for the production of hydrogen and methane from palm oil mill effluent, Environ Prog Sustain Energy, 36 (2017), 1322-1336. open in new tab
  11. Kucharska K., Hołowacz I., Konopacka-Łyskawa D., Rybarczyk P., Kamiński M., Key issues in mo- deling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels, Renew Energy, 129 (2018), 384-408. open in new tab
  12. Reungsang A., Sittijunda S., O-Thong S., Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate, Int J Hydrogen Energy, 38 (2013), 6970-6979. open in new tab
  13. Nath K., Muthukumar M., Kumar A., Das D., Kinetics of two-stage fermentation process for the production of hydrogen, Int J Hydrogen Energy, 33 (2008), 1195-1203. open in new tab
  14. Chaganti S. R., Kim D. H., Lalman J. A., Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield, Renew Energy, 48 (2012), 117-121. open in new tab
  15. Slezak R., Grzelak J., Krzystek L., Ledakowicz S., The effect of initial organic load of the kitchen wa- ste on the production of VFA and H 2 in dark fermentation, Waste Manage, 68 (2017), 610-617. open in new tab
  16. Bundhoo M. A. Z., Mohee R., Inhibition of dark fermentative bio-hydrogen production: A review, Int J Hydrogen Energy, 41 (2016), 6713-6733. open in new tab
  17. Singh L., Wahid Z. A., Siddiqui M. F., Ahmad A., Rahim M. H. A., Sakinah M., Application of immo- bilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent, Int J Hydrogen Energy, 38 (2013), 2221-2229. open in new tab
  18. Laboratoryjny bioreaktor z systemem kontroli pH do badań nad wytwarzaniem wodoru w procesie... open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 131 times

Recommended for you

Meta Tags