MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG - Publication - Bridge of Knowledge

Search

MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG

Abstract

This study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing, feature extraction, and target variable creation were also given. At the modeling stage, we created several classification models to establish a benchmark ranking of the problem related to the recognition of human emotions. Such a methodological approach enabled us to confirm that it is possible to build machine learning solutions allowing to recognize and classify human emotions with very high accuracy of over 90%.

Authors (4)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language:
English
Publication year:
2021
Bibliographic description:
Kastrau A., Koronowski M., Liksza M., Jasik P.: MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG// Information technology in biomedical engineering/ : , 2021, s.49-81
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 198 times

Recommended for you

Meta Tags