Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al - Publication - Bridge of Knowledge

Search

Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al

Abstract

The main goal of the following work is to adjust mathematical modelling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500 oC at the walls regions. The results of the experiment were compared with CFD calculations to calibrate the constants of the model’s UDFs (User Defined Functions). These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on an interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 48 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Archives of Thermodynamics no. 40, pages 3 - 26,
ISSN: 1231-0956
Language:
English
Publication year:
2019
Bibliographic description:
Badur J., Stajnke M., Ziółkowski P., Jóźwik P., Bojar Z., ZIÓŁKOWSKI P.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al// Archives of Thermodynamics -Vol. 40,iss. 3 (2019), s.3-26
DOI:
Digital Object Identifier (open in new tab) 10.24425/ather.2019.129547
Bibliography: test
  1. Park S.H., Lee Y.D., Ahn K.Y.: Performance analysis of an SOFC/HCCI en- gine hybrid system: System simulation and thermo-economic comparison. Int. J. Hydrogen Energ. 39(2014), 1799-1810. open in new tab
  2. Kalina J.: Modelling of fluidized bed biomass gasification in the quasi-equilibrium regime for preliminary performance studies of energy conversion plants. Chem. Pro- cess Eng. 32(2011), 2, 73-89. open in new tab
  3. Kardaś D., Polesek-Karczewska S., Ciżmiński P., Stelmach S.: Prediction of coking dynamics for wet coal charge. Chem. Process Eng. 36(2015), 3, 291-303. open in new tab
  4. Çelik D, Yildiz M.: Investigation of hydrogen production methods in accordance with green chemistry principles. Int. J. Hydrogen Energ. 42(2017), 3, 23395-23401. open in new tab
  5. Chiron F.-X., Patience G., Rifflart S.: Hydrogen production through chemical looping using NiO/NiAl2O4 as oxygen carrier. Chem. Eng. Sci. 66(2011), 6324- 6330. open in new tab
  6. Martin-Sanchez N., Sanchez-Montero J., Izquierdo C., Salvador F.: Im- proving the production of hydrogen from the gasification of carbonaceous solids using supercritical water until 1000 bar. Fuel 208(2017), 558-565. open in new tab
  7. Jóźwik P., Grabowski R. Bojar Z.: Catalytic activity of Ni3Al foils in methanol reforming. Mater. Sci. Forum 636-637(2010), 895-900.
  8. Jóźwik P, Polkowski W, Bojar Z.: Applications of Ni3Al based intermetallic alloys -current stage and potential perceptivities. Materials 8(2015), 2537-2568.
  9. Olafsen A., Daniel C., Schuurman Y., Raberg L.B., Olsbye U., Mirodatos C.: Light alkanes CO2 reforming to synthesis gas over Ni based catalysts. Catal. Today 115(2006), 179-185. open in new tab
  10. Michalska-Domańska M., Jóźwik P., Jankiewicz B., Bartosewicz B., Siemi- aszko D., Stȩpniowski W.J., Bojar Z.: Study of cyclic Ni3Al catalyst pretreat- ment process for uniform carbon nanotubes formation and improved hydrogen yield in methanol decomposition. Materials Today: Proc. 3 S(2016), 171-177. open in new tab
  11. Moussa S.O., El-Shall M.S.: High-temperature characterization of reactively pro- cessed nanostructure nickel aluminide intermetallics. J. Alloys Compd. 440(2007), 178-188. open in new tab
  12. Badur J.: Numerical Modelling of Sustainable Combustion in Gas Turbines. Wydawn. IMP PAN, Gdańsk 2003 (in Polish). open in new tab
  13. Jóźwik P., Badur J., Karcz M.: Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds. Chem. Process Eng. 32(2011), 3, 215-227. open in new tab
  14. Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banaś K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluid- solid interaction in micro-and nanoscale. J. Theor.. Appl. Mech. 56(2018), 1, 329-332. open in new tab
  15. Krawczyk P. Badyda K.: Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Arch. Thermodyn. 32(2011), 4, 3-16. open in new tab
  16. Badur J., Charun H.: Selected problems of heat exchange modelling in pipe chan- nels with ball turbulisers. Arch. Thermodyn. 28(2007), 1, 65-87
  17. Niedźwiedzka A., Schnerr G., Sobieski W.: Review of numerical models of cav- itating flows with the use of the homogeneous approach. Arch. Thermodyn. 37(2016), 2, 71-88. open in new tab
  18. Furmański P., Seredyński M., Łapka P., Banaszek J.: Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media. Arch. Thermodyn. 35(2014), 3, 81-103. open in new tab
  19. Karwacki J., Nowakowska H., Lackowski M., Butrymowicz D.: Numerical analysis of evaporation in microchannel under capillary pumping. Arch. Thermodyn. 36(2015), 2, 3-25 open in new tab
  20. Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018) 3, 269-300. open in new tab
  21. Kowalczyk S., Karcz M., Badur J.: Analysis of thermodynamic and material properties assumptions for three-dimensional SOFC modelling. Arch. Thermodyn. 27(2006), 3, 21-38.
  22. Orszulik M., Fic A., Bury T., Składzień J.: A model of hydrogen passive autocatalytic recombiner and its validation via CFD simulations. Arch. Thermodyn. 34(2013), 4, 257-266. open in new tab
  23. Żymełka P., Nabagło D., Janda T., Madejski P.: Online monitoring system of air distribution in pulverized coal-fired boiler based on numerical modeling. Arch. Thermodyn. 38(2017), 4, 109-125. open in new tab
  24. Asendrych D., Niegodajew P.: Numerical study of the CO2absorber performance subjected to the varying amine solvent and flue gas loads. Chem. Eng. Commun. 204(2017), 5, 580-590. open in new tab
  25. Xu Y., Ma Y., Sakurai J., Teraoka Y., Yoshigoe A., Demura M., Hirano T.: Effect of water vapor and hydrogen treatments on the surface structure of Ni3Al foil. Appl. Surf. Sci. 315(2014), 475-480. open in new tab
  26. Ziółkowski P., Stajnke M., Jóźwik P.: Modeling of a mixture flow of helium and methanol in thermocatalytic reactor and chemical reactions on the intermetallic phase of Ni3Al. Trans. Inst. Fluid-Flow Mach. 138(2017), 33-73. open in new tab
  27. Mitani H., Xu Y., Hirano T., Demura M., Tamura R.: Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition. Catalysis Today 281(2017), 669-676. open in new tab
  28. Michalska-Domańska M., Bystrzycki J., Jankiewicz B., Bojar Z.: Effect of the grain diameter of Ni-based catalysts on their catalytic properties in the thermo- catalytic decomposition of methanol. CR Chim. 20(2017) 156-163. open in new tab
  29. Xu Y., Yang J., Demura M., Hirano T., Matsushita Y., Teraoka Y., Kat- suya Y.: Catalytic performance of Ni-Al nanoparticles fabricated by arc plasma evaporation for methanol decomposition. Int. J. Hydrogen Energ. 39(2014), 13156- 13163. open in new tab
  30. Kuo K.K., Acharya R.: Applications of turbulent and multiphase combustion. John Wiley & Sons, New Jersey 2012. open in new tab
  31. Badur J., Ziółkowski P.J. Ziółkowski P.: On the angular velocity slip in nano flows. Microfluid Nanofluid 19(2015), 191-198. open in new tab
  32. Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018),1, 64-80. open in new tab
  33. Modliński N., Madejski P., Janda T., Szczepanek K., Kordylewski W.: A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement. Energy 92(2015), 77-86. open in new tab
  34. Weber R., Schaffel-Mancini N., Mancini M., Kupka T.: Fly ash deposition modelling: requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics. Fuel 108(2013), 586-596. open in new tab
  35. Badur J., Ziółkowski P., Sławiński D., Kornet S.: An approach for esti- mation of water wall degradation within pulverized-coal boilers. Energy 92 (2015), 142-152. open in new tab
  36. Ziółkowski P., Stajnke M., Jóźwik P., Bojar Z., Ziółkowski P.J., Badur J.: Analysis of species diffusion and methanol decomposition source in thermocat- alytic reactor based on the intermetallic phase of Ni3Al for low Reynolds numbers. J. Physics: Conf. Ser. 1101 (2018), 012050. open in new tab
  37. Lemański M., Karcz M.: Performance of lignite-syngas operated tubular solid oxide fuel cell. Chem. Process Eng. 29(2008), 233-48. open in new tab
  38. Ziółkowski P., Hernet J., Badur J.: Revalorization of the Szewalski binary vapour cycle. Arch. Thermodyn. 35(2014), 3, 225-249.
  39. Tesch K., Collins M., Karayiannis T., Atherton M., Edwards P.: Modelling of two-component turbulent mass and heat transfer in air-fed pressurised suits. Flow Turbul. Combust. 87(2011), 55-77. open in new tab
  40. Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effective- ness. J. Therm. Sci. 26(2017), 5, 459-464. open in new tab
  41. Stajnke M., Badur J.: Catalytic utilization of unconventional fuels in a gas tur- bine. J. Phys. Conf. Ser. 1101(2018), 012038. open in new tab
  42. Sanz O., Velasco I., Reyero I., Legorburu I., Arzamendi G., Gandia L., Montes M.: Effect of the thermal conductivity of metallic monoliths on methanol steam reforming. Catalysis Today 273 (2016), 131-139. open in new tab
  43. Meng Q.B., Gu Z.Z., Sato O., Fujishima A.: Fabrication of highly ordered porous structures. Appl. Phys. Lett. 77(2000), 26, 4313-4315. https://doi.org/10.1063/1.1332109 open in new tab
  44. Nandiyanto A.B.D., Hagura N., Iskandar F., Okuyama K.: Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Materialia 58(2010), 282-289. open in new tab
  45. Madejski P., Krakowska P., Habrat M., Puskarczyk E., Jȩdrychowski M.: Comprehensive approach for porous materials analysis using a dedicated preprocess- ing tool for mass and heat transfer modeling. J. Therm. Sci. 27(2018), 5, 479-486. open in new tab
  46. Vafai K., Tien C.L.: Boundary and inertial effects on flow and heat transfer in porous media. Int. J.Heat Mass Tran. 24(1981), 195-203. open in new tab
  47. Krakowska P., Puskarczyk E., Jȩdrychowski M., Habrat M., Madejski P., Dohnalik M.: Innovative characterization of tight sandstones from Paleozoic basins in Poland using X-ray computed tomography supported by nuclear magnetic resonance and mercury porosimetry. J. Petrol. Sci. Eng. 166(2018), 389-405. open in new tab
  48. Puskarczyk E., Krakowska P., Jȩdrychowski M., Habrat M., Madejski P.: A novel approach to the quantitative interpretation of petrophysical parameters using nano CT: Example of Paleozoic carbonates. Acta Geophysica 66(2018),1453-1461. open in new tab
  49. Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. In: AIP Conf. Proc. 2077(2019), 020065. https://doi.org/10.1063/1.5091926 open in new tab
  50. Moghaddam R. N., Jamiolahmady M.: Slip flow in porous media. Fuel 173(2016), 298-310.
  51. Hooman K.: Heat and fluid flow in a rectangular microchannel filled with a porous medium. Int. J. Heat Mass Tran. 51(2008), 5804-5810. open in new tab
  52. Vignoles G.L., Charrier P., Preux C., Dubroca B.: Rarefied pure gas trans- port in non-isothermal porous media: effective transport properties from homoge- nization of the kinetic equation. Transport Porous Med. 73(2008), 211-232. open in new tab
  53. Sobieski W., Dudda W.: Sensitivity analysis as a tool for estimating numerical modeling results. Dry. Technol. 32(2014), 2, 145-155. open in new tab
  54. Cieszko M., Kempiński M., Czerwiński T.: Limit models of pore space struc- ture of porous materials for determination of limit pore size distributions based on mercury intrusion data. Transport Porous Med. 127(2019), 433-458. open in new tab
  55. Cieszko M.: Macroscopic description of capillary transport of liquid and gas in unsaturated porous materials. Meccanica 51(2016), 10, 2331-2352, DOI 10.1007/s11012-016-0368-4. open in new tab
Sources of funding:
  • The work results were obtained in studies co-financed by the National Research and Development Centre in the project PBS 3 ID 246201 titled: ‘The development of innovative technology, thin foils of alloys based on intermetallic phase Ni3Al with high activity thermocatalytic in the field of purification of air from harmful substances or controlled decomposition of hydrocarbons’
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags