Metallurgical characterization and high-temperature tensile failure of Inconel 617 alloy welded by GTAW and SMAW—a comparative study
Abstract
Two types of the weld joint of Inconel 617 alloy were produced using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) processes with ERNiCrCoMo-1 filler metal and ENiCrCoMo-1 electrode, respectively. The weld metal showed the segregation of the principle alloying elements like Mo and Cr along the inter-dendritic spaces, triggering the formation of secondary phases. The microstructure characterization of the interface ensured the high dilution, which could be attributed to the closeness in melting point and chemistry of base and filler metal. Microhardness variation, tensile testing at room and high temperature, and Charpy impact test were conducted to investigate the effect of the Mo segregation in the weld zone and heterogeneity in the microstructure of weldments on the mechanical behavior of both the welded joints. The cross-weld tensile tests were conducted at room temperature and 550°C. The tensile test samples failed from the weld zone for each condition with a tensile strength value close to the base metal, which ensured the applicability of the joint for end service. The tensile strength of GTAW-RT, GTAW-HT, SMAW-RT, and SMAW-HT were measured as 766 ± 22 MPa, 570 ± 5 MPa, 760 ± 7 MPa, and 600 ± 8 MPa, respectively. A non-uniform hardness plot was witnessed with the hardness of the GTAW-weld and SMAW-weld zone of 257 ± 8 HV and 285 ± 5 HV, respectively, in the transverse direction. The impact toughness of the weld zone was 84 ± 2 J and 48 ± 4 J for GTAW and SMAW weld zone. The average impact toughness of the GTAW-weld zone was approximately 42% higher than the value of the SMAW-weld zone. In a nutshell, it can be concluded that the welded joint of Inconel 617 produced using the GTAW process with ERNiCrCoMo-1 filler had the best metallurgical and mechanical properties.
Citations
-
4
CrossRef
-
0
Web of Science
-
8
Scopus
Authors (7)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS
no. 237,
pages 2046 - 2067,
ISSN: 1464-4207 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Sirohi S., Kumar N., Kumar A., Pandey S. M., Adhithan B., Fydrych D., Pandey C.: Metallurgical characterization and high-temperature tensile failure of Inconel 617 alloy welded by GTAW and SMAW—a comparative study// PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS -,iss. 9 (2023), s.2046-2067
- DOI:
- Digital Object Identifier (open in new tab) 10.1177/14644207231171266
- Sources of funding:
-
- Indian Institute of Technology Jodhpur, India, the grant No: SEED/CHP/20210130
- Verified by:
- Gdańsk University of Technology
seen 61 times
Recommended for you
P92 steel and inconel 617 alloy welds joint produced using ERNiCr-3 filler with GTAW process: Solidification mechanism, microstructure, mechanical properties and residual stresses
- A. Kumar,
- S. M. Pandey,
- S. Sirohi
- + 2 authors
Microstructure and Mechanical Properties of Combined GTAW and SMAW Dissimilar Welded Joints between Inconel 718 and 304L Austenitic Stainless Steel
- S. Sirohi,
- S. M. Pandey,
- A. Świerczyńska
- + 5 authors
Study on Microstructure-Property Relationship of Inconel 617 Alloy/304L SS Steel Dissimilar Welds Joint
- A. Kumar,
- K. Guguloth,
- S. M. Pandey
- + 3 authors
Microstructure and mechanical properties of a dissimilar metal welded joint of Inconel 617 and P92 steel with Inconel 82 buttering layer for AUSC boiler application
- A. Kumar,
- S. Sirohi,
- M. Singh
- + 2 authors