Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment
Abstract
Polymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide ( TiO2) with different concentrations. The key observation is that adding the fillers causes an increase of dielectric constants by around 100% (for highest loading) up to 4.2 and 3.4, for micro-ceramics and TiO2 based composites, respectively. Interestingly, for the TiO2 composite, the loss tangent depends on the filler loading volume, whereas the other composite has a slightly increasing tendency, however, being at the level ~ 10– 3. To explain the experimental results, a theoretical model determined by microwave reflection and transmission through a representative volume element is proposed, which allows the investigation of the impact of volume ratio, grain shape, aggregation, and size on the loss tangent and permittivity evolution. This approach could be used for modeling other low dielectric loss materials with inclusions.
Citations
-
3
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-022-17173-4
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Scientific Reports
no. 12,
ISSN: 2045-2322 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Wilczyński K., Wróblewska A., Dzieniszewska A., Krupka J., Mrozowski M., Zdrojek M.: Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment// Scientific Reports -Vol. 12,iss. 1 (2022), s.13104-
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-022-17173-4
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 114 times
Recommended for you
Dielectric Properties of BiNbO<sub>4</sub>-Based Ceramic-Polymer Composites with 0-3 Connectivity
- A. Lisińska-Czekaj,
- J. Micior,
- M. Adamczyk
- + 1 authors
Comparative Analysis of the Cofee and Cocoa Industry By‑Products on the Performance of Polyethylene‑Based Composites
- A. Hejna,
- M. Barczewski,
- P. Kosmela
- + 1 authors