Monosubstituted hydrazone β-cyclodextrin derivatives for pH-sensitive complex formation with aromatic drugs - Publication - Bridge of Knowledge

Search

Monosubstituted hydrazone β-cyclodextrin derivatives for pH-sensitive complex formation with aromatic drugs

Abstract

A new and convenient synthetic pathway was developed to produce monosubstituted cyclodextrins with high yields. Each of the β-cyclodextrin derivatives described in this work has an aromatic substituent connected with cyclodextrin core by a pH-sensitive hydrazone linker and a carbon chain. Carbon chains differ in lengths having one or three carbon atoms. The correlation between water solubility and linker length was determined using UV–Vis spectroscopy, while the dependence of hydrazone bond hydrolysis on the electrolyte pH was confirmed by cyclic voltammetry. The pH-dependent complex-formation ability between the hydrazone derivative of cyclodextrin and anthracycline drug was examined by square wave voltammetry. The significantly big solubility and the appropriate pH, at which the hydrolysis of the hydrazone bond occurs, make the newly synthesized derivatives attractive for pharmaceutical and medical applications.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

download paper
downloaded 54 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Journal of Inclusion Phenomena and Macrocyclic Chemistry no. 93, pages 77 - 83,
ISSN: 1388-3127
Language:
English
Publication year:
2019
Bibliographic description:
Majdecki M., Krzak A., Sadowska K., Swiech O.: Monosubstituted hydrazone β-cyclodextrin derivatives for pH-sensitive complex formation with aromatic drugs// JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY. -Vol. 93, iss. 1-2 (2019), s.77-83
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10847-018-0841-x
Bibliography: test
  1. Ueno, A., Breslow, R.: Selective sulfonation of a secondary hydroxyl group of β-cyclodextrin. Tetrahedron Lett. 23, 3451- 3454 (1982) open in new tab
  2. Tripodo, G., Wischke, C., Neffe, A.T., Lendlein, A.: Efficient synthesis of pure monotosylated betacyclodextrin and its dimers. Carbohydr. Res. 381, 59-63 (2013) open in new tab
  3. Yoon, J., Hong, S., Martin, K.A., Czarnik, A.W.: A general method for the synthesis of cyclodextrinyl aldehydes and carbox- ylic acids. J. Org. Chem. 60, 2792-2795 (1996) open in new tab
  4. Huff, J.B., Bieniarz, C.: Synthesis and reactivity of 6-β-cyclodextrin monoaldehyde: an electrophilic cyclodextrin for the derivatization of macromolecules under mild conditions. J. Org. Chem. 59, 7511-7516 (1994) open in new tab
  5. Cornwell, M.J., Huff, J.B., Bieniarz, C.: A one-step synthesis of cyclodextrin monoaldehydes. Tetrahedron Lett. 36, 8371-8374 (1995) open in new tab
  6. Dess, D.B., Martin, J.C.: Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 48, 4155-4156 (1983) open in new tab
  7. Dess, D.B., Martin, J.C.: A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of pri- mary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. 113, 7277-7287 (1991) open in new tab
  8. Swiech, O., Mieczkowska, A., Chmurski, K., Bilewicz, R.: Inter- molecular interactions between doxorubicin and β-cyclodextrin 4-methoxyphenol conjugates. J. Phys. Chem. B 116, 1765-1771 (2012) open in new tab
  9. Swiech, O., Majdecki, M., Dembinski, A., Krzak, A., Stepkowski, T., Wojciuk, G., Kruszewski, M., Bilewicz, R.: Competition between self-inclusion and drug binding explains the pH depend- ence of the cyclodextrin drug carrier-molecular modeling and electrochemistry studies. Nanoscale 8, 16733-16742 (2016) open in new tab
  10. Krohn, K., Eds: Molecular mechanisms of anthracycline activity. In: Anthrcycline Chemistry and Biology, Mode of Action, Clinical Aspects and New Drugs, pp. 5-11, Springer, Berlin (2008) open in new tab
  11. Chaires, J.B., Herrera, J.E., Waring, M.J.: Preferential binding of daunomycin to 5′TACG and 5′TAGC sequences revealed by footprinting titration experiments. Biochemistry 29, 6145-6153 (1990) open in new tab
  12. Quigley, G.J., Wang, A.H., Ughetto, G., van der Marel, G., van Boom, J.H., Rich, A.: Molecular structure of an anticancer drug- DNA complex: daunomycin plus d(CpGpTpApCpG). Proc. Natl. Acad. Sci. USA 77, 7204-7208 (1980) open in new tab
  13. Takemura, G., Fujiwara, H.: Doxorubicin-induced cardiomyo- pathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49, 330-352 (2007) open in new tab
  14. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., Gianni, L.: Anthracyclines: molecular advances and pharmacologic develop- ments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185-229 (2004) open in new tab
  15. Myers, C.E., McGuire, W., Young, R.: Adriamycin: amelioration of toxicity by alpha-tocopherol. Cancer Treat. Rep. 60, 961-962 (1976) open in new tab
  16. Bekers, O., Kettenes, J.J., Van Helden, S.P., Seijkens, D., Beijnen, J.H., Bulti, A., Underberg, W.J.: Inclusion complex formation of anthracycline antibiotics with cyclodextrins; a proton nuclear magnetic resonance and molecular modelling study. J. Incl. Phe- nom. Mol. Recogn. Chem. 11, 185-193 (1991) open in new tab
  17. Husain, N., Ndou, T.T., De La Peña, A.M., Warner, I.M.: Com- plexation of doxorubicin with β and γ-cyclodextrins. Appl. Spec- trosc. 46, 652-658 (1992) open in new tab
  18. Frömming, K.-H., Szejtli, J.: Cyclodextrins in Pharmacy. Kluwer Acad. Publ., Dordrecht (1994) open in new tab
  19. Duchêne, D.: New Trends in Cyclodextrins and Derivatives. Edi- tions de Sante, Paris (1991)
  20. Szejtli, J.: Cyclodextrin Technology. Kluwer Acad. Publ., Dordrecht (1988) open in new tab
  21. Duchêne, D.: Cyclodextrins and their Industrial Uses. Editions de Sante´, Paris (1987) open in new tab
  22. Loftsson, T.: The effects of cyclodextrins on the chemical stability of drugs in aqueous solutions. Drug Stab. 1, 22-33 (1995)
  23. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017-1025 (1996) open in new tab
  24. Brewster, M.E., Loftsson, T., Estes, K.S., Lin, J.L., Friđriksdóttir, H.: Effects of various cyclodextrins on solution stability and dis- solution rate of doxorubicin hydrochloride. Int. J. Pharm. 79, 289-299 (1992) open in new tab
  25. Al-Ghorbani, M., Vigneshwaran, V., Ranganatha, V.L., Prabhakar, B.T., Shaukath, A.K.: Synthesis of oxadiazole-morpholine deriva- tives and manifestation of therepressed CD31 Microvessel Density (MVD) as tumoral angiogenic parameters in Dalton's Lymphoma. Bioorg. Chem. 60, 136-146 (2015) open in new tab
  26. Mora, L., Chumbimuni-Torres, K.Y., Clawson, C., Hernandez, L., Zhang, L., Wang, J.: Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. J. Controlled Release 140, 69; (2009) open in new tab
  27. Osa, T., Matsue, T., Fujihira, T.: Heterocycles 6, 1833-1839 (1977) open in new tab
  28. Swiech, O., Dutkiewicz, P., Wojciuk, K., Chmurski, K., Krusze- wski, M., Bilewicz, R.: Cyclodextrin derivatives conjugated with aromatic moieties as pH-responsive drug carriers for anthracy- cline. J. Phys. Chem. B 117, 13444-13450 (2013) open in new tab
Verified by:
Gdańsk University of Technology

seen 142 times

Recommended for you

Meta Tags