Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes - Publication - Bridge of Knowledge

Search

Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes

Abstract

The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 22 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF NANOPARTICLE RESEARCH no. 20, edition 5, pages 1 - 16,
ISSN: 1388-0764
Language:
English
Publication year:
2018
Bibliographic description:
Matyszewska D., Napora E., Żelechowska K., Biernat J., Bilewicz R.: Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes// JOURNAL OF NANOPARTICLE RESEARCH. -Vol. 20, iss. 5 (2018), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.1007/s11051-018-4239-x
Bibliography: test
  1. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco M, Kostarelos K (2008) Multiwalled carbon nanotube- doxorubicin supramolecular complexes for cancer therapeu- tics. Chem Comm 4:459-461 open in new tab
  2. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879-7884 open in new tab
  3. Banks CE, Wildgoose GG, Heald CGR, Compton RG (2005) Oxygen reduction catalysis at anthraquinone centres molec- ularly wired via carbon nanotubes. J Iran Chem Soc 2:60-64 open in new tab
  4. Beretta GL, Zunino F (2007) Molecular mechanisms of anthracycline activity. In: Krohn K (ed) Anthracycline chem- istry and biology II, Topics in current chemistry, vol 283. Springer, Berlin, pp 1-19 open in new tab
  5. Ciobotaru CC, Damian CM, Polosan S, Matei E, Iovu H (2014) Covalent functionalization of single walled carbon nanotubes with doxorubicin for controlled drug delivery systems. Dig J Nanomater Biostruct 9:413-422 open in new tab
  6. Cortes-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7:56-60 open in new tab
  7. Das G, Nicastri A, Coluccio ML, Gentile F, Candeloro P, Cojoc G, Liberale C, De Angelis F, Di Fabrizio E (2010) FT-IR, Raman, RRS measurements and DFT calculation for doxo- rubicin. Microsc Res Techniq 73:991-995 open in new tab
  8. Dynarowicz-Łątka P, Hąc-Wydro K (2014) Edelfosine in mem- brane environment-the Langmuir monolayer studies. Anti- Cancer Agents Medicin Chem 14:499-508 open in new tab
  9. Fan J, Zeng F, Xu J, Wu S (2013) Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. J Nanopart Res 15: 1911-1926 open in new tab
  10. Fu YR, Zhang S, Chen M, Qian DJ (2012) Morphology and electrochemical properties of amphiphilic viologen function- alized multiwalled carbon nanotube hybrids in Langmuir- Blodgett films. Thin Solid Films 520:6994-7001 open in new tab
  11. Gaines GL Jr (1966) Insoluble monolayers at liquid-gas interfaces. Interscience, New York Geraldo VPN, Pavinatto FJ, Nobre TM, Caseli Oliveira LON Jr (2013) Langmuir films containing ibuprofen and phospholipids. Chem Phys Lett 559:99-106. https://doi.org/10.1016/j.cplett.2012.12.064 open in new tab
  12. Gu YJ, Cheng J, Jin J, Cheng SH, Wong W (2011) Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomedicine 6:2889-2898
  13. Harkins WD (1952) The physical chemistry of surface films. Reinhold, New York Hirsch A (2002) Functionalization of single-walled carbon nano- tubes. Angew Chem Int Ed 41:1853-1859
  14. Jia L, Zhang Y, Li J, You C, Xie E (2008) Aligned single-walled carbon nanotubes by Langmuir-Blodgett technique. J Appl Phys 104:074318 open in new tab
  15. Jiang W, Wang Q, Qu X, Wang L, Wei X, Zhu D, Yang K (2017) Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Sci Total Environ 574:771-780 open in new tab
  16. Jyoti A, Prokop RM, Li J, Vollhardt D, Kwok DY, Miller R, Möhwald H, Neumann AW (1996) An investigation of the compression rate dependence on the surface pressure-surface area isotherm for a dipalmitoyl phosphatidylcholine mono- layer at the air/water interface. Colloids Surf A Physicochem Eng Asp 16:173-180 open in new tab
  17. Khabashesku VN, Pulikkathara MX (2006) Chemical modifica- tion of carbon nanotubes. Men Commun 2:61-66 open in new tab
  18. Khazaei A, Rad MNS, Borazjan MK (2010) Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int J Nanomedicine 5:639-645 open in new tab
  19. Komorsky-Lovrić S (2006) Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes. Bioelectrochemistry 69:82-87 open in new tab
  20. Lacerda L, Ali-Boucetta H, Kraszewski S, Tarek M, Prato M, Ramseyer C, Kostarelos K, Bianco A (2013) How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nano 5: 10242-10250 open in new tab
  21. Le CMQ, Cao XT, Kim DW, Ban UH, Lee SH, Lim KT (2017) Preparation of poly(styrene-alt-maleic anhydride) grafted multi-walled carbon nanotubes for pH-responsive release of doxorubicin. Mol Cryst Liq Cryst 654:181-189 open in new tab
  22. Lee M, Jeong J, Kim D (2015) Intracellular uptake and pH- dependent release of doxorubicin from the self-assembled micelles based on amphiphilic polyaspartamide graft copol- ymers. Biomacromolecules 16:136-144 open in new tab
  23. Li MH, Yu H, Wang TF, Chang ND, Zhang JQ, Du D, Liu MF, Sun SL, Wang R, Tao HQ, Geng SL, Shen ZY, Wang Q, Peng HS (2014) Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo. J Mater Chem B 2:1619-1625 open in new tab
  24. Liu AR, Qian DJ, Wakayama T, Nakamura C, Miyake J (2006) Monolayers, Langmuir-Blodgett films of carbon nanotubes- cytochrome c conjugates and electrochemistry. Colloids Surf A Physicochem Eng Asp 284-285:485-489 open in new tab
  25. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nano- tubes for drug loading and delivery. ACS Nano 1:50-56 open in new tab
  26. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 48:7668-7672 open in new tab
  27. Lo CL, Lee YL, Hsu WP (2010) Behavior of mixed multi-walled carbon nanotube/P3HT monolayer at the air/water interface. Synth Met 160:2219-2223 open in new tab
  28. Long D, Wu G, Zhu G (2008) Noncovalently modified carbon nanotubes with carboxymethylated chitosan: a controllable donor-acceptor nanohybrid. Int J Mol Sci 9:120-130 open in new tab
  29. Ma P, Mumper RJ (2013) Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today 8:313-331 open in new tab
  30. Manocha B, Margaritis A (2010) Controlled release of doxorubi- cin from doxorubicin/gamma-polyglutamic acid ionic com- plex. J Nanomaterials 2010:780171 open in new tab
  31. Matyszewska D (2016) Comparison of the interactions of dauno- rubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes. Beilstein J Nanotechnol 7:524-532 open in new tab
  32. Matyszewska D, Bilewicz R (2015) Interactions of daunorubicin with Langmuir-Blodgett thiolipid monolayers. Electrochim Acta 162:45-52 open in new tab
  33. Matyszewska D, Brzezińska K, Juhaniewicz J, Bilewicz R (2015) pH dependence of daunorubicin interactions with model DMPC:cholesterol membranes. Colloids Surf B: Biointerfaces 134:295-303 open in new tab
  34. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185-229 open in new tab
  35. Nazaruk E, Sadowska K, Biernat JF, Rogalski J, Ginalska G, Bilewicz R (2010) Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal Bioanal Chem 398:1651-1660 open in new tab
  36. Nazaruk E, Szlęzak M, Gorecka E, Bilewicz R, Osornio YM, Uebelhart P, Landau EM (2014) Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release. Langmuir 30:1383-1390 open in new tab
  37. Nieciecka D, Nawara K, Kijewska K, Nowicka AM, Mazur M, Krysinski P (2013) Solid-core and hollow magnetic nano- structures: synthesis, surface modifications and biological applications. Bioelectrochemistry 93:2-14 open in new tab
  38. Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D- band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Let 402:422-427 open in new tab
  39. Peng H, Reverdy P, Khabashesku VN, Margrave JL (2003) Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem Commun 9:362-363 open in new tab
  40. Peretz S, Regev O (2012) Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interf Sci 17:360-368 open in new tab
  41. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin- conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:5757-5766 open in new tab
  42. Sadowska K, Roberts KP, Wiser R, Biernat JF, Jabłonowska E, Bilewicz R (2009) Synthesis, characterization, and electro- chemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 47:1501-1510 open in new tab
  43. Sadowska K, Stolarczyk K, Biernat JF, Roberts KP, Rogalski J, Bilewicz R (2010) Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen elec- trodes. Bioelectrochemistry 80:73-80 open in new tab
  44. Sandrino B, Tominaga TT, Nobre L, Wrobel EC, Fiorin BC, de Araujo L, Oliveira ON Jr, Wohnrath K (2014) Correlation of [RuCl3(dppb)(VPy)] cytotoxicity with its effects on the cell membranes: an investigation using Langmuir monolayers as membrane models. J Phys Chem B 118:10653-10661 open in new tab
  45. Saveant JM (2006) Elements of molecular and biomolecular elec- trochemistry. Wiley Interscience, New Jersey Seemork J, Sansureerungsikul T, Sathornsantikun K, Sinthusake T, Shigyou K, Tree-Udom T, Jiangchareon B, Chiablaem K, Lirdprapamongkol K, Svasti J, Hamada T, Palaga T, Wanichwecharungruang S (2016) Penetration of oxidized carbon nanospheres through lipid bilayer membrane: com- parison to graphene oxide and oxidized carbon nanotubes, and effects of pH and membrane composition. ACS Appl Mater Interfaces 8:23549-23557
  46. Shafizadeh F (1971) Thermal behavior of carbohydrates. J Polymer Sci C 36:21-51 open in new tab
  47. Yang ST, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2:271-282 open in new tab
  48. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30: 6041-6047 open in new tab
Verified by:
Gdańsk University of Technology

seen 109 times

Recommended for you

Meta Tags