Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes - Publikacja - MOST Wiedzy

Wyszukiwarka

Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes

Abstrakt

The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes.

Cytowania

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Autorzy (5)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF NANOPARTICLE RESEARCH nr 20, wydanie 5, strony 1 - 16,
ISSN: 1388-0764
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Matyszewska D., Napora E., Żelechowska K., Biernat J., Bilewicz R.: Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes// JOURNAL OF NANOPARTICLE RESEARCH. -Vol. 20, iss. 5 (2018), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11051-018-4239-x
Bibliografia: test
  1. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco M, Kostarelos K (2008) Multiwalled carbon nanotube- doxorubicin supramolecular complexes for cancer therapeu- tics. Chem Comm 4:459-461 otwiera się w nowej karcie
  2. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879-7884 otwiera się w nowej karcie
  3. Banks CE, Wildgoose GG, Heald CGR, Compton RG (2005) Oxygen reduction catalysis at anthraquinone centres molec- ularly wired via carbon nanotubes. J Iran Chem Soc 2:60-64 otwiera się w nowej karcie
  4. Beretta GL, Zunino F (2007) Molecular mechanisms of anthracycline activity. In: Krohn K (ed) Anthracycline chem- istry and biology II, Topics in current chemistry, vol 283. Springer, Berlin, pp 1-19 otwiera się w nowej karcie
  5. Ciobotaru CC, Damian CM, Polosan S, Matei E, Iovu H (2014) Covalent functionalization of single walled carbon nanotubes with doxorubicin for controlled drug delivery systems. Dig J Nanomater Biostruct 9:413-422 otwiera się w nowej karcie
  6. Cortes-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7:56-60 otwiera się w nowej karcie
  7. Das G, Nicastri A, Coluccio ML, Gentile F, Candeloro P, Cojoc G, Liberale C, De Angelis F, Di Fabrizio E (2010) FT-IR, Raman, RRS measurements and DFT calculation for doxo- rubicin. Microsc Res Techniq 73:991-995 otwiera się w nowej karcie
  8. Dynarowicz-Łątka P, Hąc-Wydro K (2014) Edelfosine in mem- brane environment-the Langmuir monolayer studies. Anti- Cancer Agents Medicin Chem 14:499-508 otwiera się w nowej karcie
  9. Fan J, Zeng F, Xu J, Wu S (2013) Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. J Nanopart Res 15: 1911-1926 otwiera się w nowej karcie
  10. Fu YR, Zhang S, Chen M, Qian DJ (2012) Morphology and electrochemical properties of amphiphilic viologen function- alized multiwalled carbon nanotube hybrids in Langmuir- Blodgett films. Thin Solid Films 520:6994-7001 otwiera się w nowej karcie
  11. Gaines GL Jr (1966) Insoluble monolayers at liquid-gas interfaces. Interscience, New York Geraldo VPN, Pavinatto FJ, Nobre TM, Caseli Oliveira LON Jr (2013) Langmuir films containing ibuprofen and phospholipids. Chem Phys Lett 559:99-106. https://doi.org/10.1016/j.cplett.2012.12.064 otwiera się w nowej karcie
  12. Gu YJ, Cheng J, Jin J, Cheng SH, Wong W (2011) Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomedicine 6:2889-2898
  13. Harkins WD (1952) The physical chemistry of surface films. Reinhold, New York Hirsch A (2002) Functionalization of single-walled carbon nano- tubes. Angew Chem Int Ed 41:1853-1859
  14. Jia L, Zhang Y, Li J, You C, Xie E (2008) Aligned single-walled carbon nanotubes by Langmuir-Blodgett technique. J Appl Phys 104:074318 otwiera się w nowej karcie
  15. Jiang W, Wang Q, Qu X, Wang L, Wei X, Zhu D, Yang K (2017) Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Sci Total Environ 574:771-780 otwiera się w nowej karcie
  16. Jyoti A, Prokop RM, Li J, Vollhardt D, Kwok DY, Miller R, Möhwald H, Neumann AW (1996) An investigation of the compression rate dependence on the surface pressure-surface area isotherm for a dipalmitoyl phosphatidylcholine mono- layer at the air/water interface. Colloids Surf A Physicochem Eng Asp 16:173-180 otwiera się w nowej karcie
  17. Khabashesku VN, Pulikkathara MX (2006) Chemical modifica- tion of carbon nanotubes. Men Commun 2:61-66 otwiera się w nowej karcie
  18. Khazaei A, Rad MNS, Borazjan MK (2010) Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int J Nanomedicine 5:639-645 otwiera się w nowej karcie
  19. Komorsky-Lovrić S (2006) Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes. Bioelectrochemistry 69:82-87 otwiera się w nowej karcie
  20. Lacerda L, Ali-Boucetta H, Kraszewski S, Tarek M, Prato M, Ramseyer C, Kostarelos K, Bianco A (2013) How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nano 5: 10242-10250 otwiera się w nowej karcie
  21. Le CMQ, Cao XT, Kim DW, Ban UH, Lee SH, Lim KT (2017) Preparation of poly(styrene-alt-maleic anhydride) grafted multi-walled carbon nanotubes for pH-responsive release of doxorubicin. Mol Cryst Liq Cryst 654:181-189 otwiera się w nowej karcie
  22. Lee M, Jeong J, Kim D (2015) Intracellular uptake and pH- dependent release of doxorubicin from the self-assembled micelles based on amphiphilic polyaspartamide graft copol- ymers. Biomacromolecules 16:136-144 otwiera się w nowej karcie
  23. Li MH, Yu H, Wang TF, Chang ND, Zhang JQ, Du D, Liu MF, Sun SL, Wang R, Tao HQ, Geng SL, Shen ZY, Wang Q, Peng HS (2014) Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo. J Mater Chem B 2:1619-1625 otwiera się w nowej karcie
  24. Liu AR, Qian DJ, Wakayama T, Nakamura C, Miyake J (2006) Monolayers, Langmuir-Blodgett films of carbon nanotubes- cytochrome c conjugates and electrochemistry. Colloids Surf A Physicochem Eng Asp 284-285:485-489 otwiera się w nowej karcie
  25. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nano- tubes for drug loading and delivery. ACS Nano 1:50-56 otwiera się w nowej karcie
  26. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 48:7668-7672 otwiera się w nowej karcie
  27. Lo CL, Lee YL, Hsu WP (2010) Behavior of mixed multi-walled carbon nanotube/P3HT monolayer at the air/water interface. Synth Met 160:2219-2223 otwiera się w nowej karcie
  28. Long D, Wu G, Zhu G (2008) Noncovalently modified carbon nanotubes with carboxymethylated chitosan: a controllable donor-acceptor nanohybrid. Int J Mol Sci 9:120-130 otwiera się w nowej karcie
  29. Ma P, Mumper RJ (2013) Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today 8:313-331 otwiera się w nowej karcie
  30. Manocha B, Margaritis A (2010) Controlled release of doxorubi- cin from doxorubicin/gamma-polyglutamic acid ionic com- plex. J Nanomaterials 2010:780171 otwiera się w nowej karcie
  31. Matyszewska D (2016) Comparison of the interactions of dauno- rubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes. Beilstein J Nanotechnol 7:524-532 otwiera się w nowej karcie
  32. Matyszewska D, Bilewicz R (2015) Interactions of daunorubicin with Langmuir-Blodgett thiolipid monolayers. Electrochim Acta 162:45-52 otwiera się w nowej karcie
  33. Matyszewska D, Brzezińska K, Juhaniewicz J, Bilewicz R (2015) pH dependence of daunorubicin interactions with model DMPC:cholesterol membranes. Colloids Surf B: Biointerfaces 134:295-303 otwiera się w nowej karcie
  34. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185-229 otwiera się w nowej karcie
  35. Nazaruk E, Sadowska K, Biernat JF, Rogalski J, Ginalska G, Bilewicz R (2010) Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal Bioanal Chem 398:1651-1660 otwiera się w nowej karcie
  36. Nazaruk E, Szlęzak M, Gorecka E, Bilewicz R, Osornio YM, Uebelhart P, Landau EM (2014) Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release. Langmuir 30:1383-1390 otwiera się w nowej karcie
  37. Nieciecka D, Nawara K, Kijewska K, Nowicka AM, Mazur M, Krysinski P (2013) Solid-core and hollow magnetic nano- structures: synthesis, surface modifications and biological applications. Bioelectrochemistry 93:2-14 otwiera się w nowej karcie
  38. Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D- band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Let 402:422-427 otwiera się w nowej karcie
  39. Peng H, Reverdy P, Khabashesku VN, Margrave JL (2003) Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem Commun 9:362-363 otwiera się w nowej karcie
  40. Peretz S, Regev O (2012) Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interf Sci 17:360-368 otwiera się w nowej karcie
  41. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin- conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:5757-5766 otwiera się w nowej karcie
  42. Sadowska K, Roberts KP, Wiser R, Biernat JF, Jabłonowska E, Bilewicz R (2009) Synthesis, characterization, and electro- chemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 47:1501-1510 otwiera się w nowej karcie
  43. Sadowska K, Stolarczyk K, Biernat JF, Roberts KP, Rogalski J, Bilewicz R (2010) Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen elec- trodes. Bioelectrochemistry 80:73-80 otwiera się w nowej karcie
  44. Sandrino B, Tominaga TT, Nobre L, Wrobel EC, Fiorin BC, de Araujo L, Oliveira ON Jr, Wohnrath K (2014) Correlation of [RuCl3(dppb)(VPy)] cytotoxicity with its effects on the cell membranes: an investigation using Langmuir monolayers as membrane models. J Phys Chem B 118:10653-10661 otwiera się w nowej karcie
  45. Saveant JM (2006) Elements of molecular and biomolecular elec- trochemistry. Wiley Interscience, New Jersey Seemork J, Sansureerungsikul T, Sathornsantikun K, Sinthusake T, Shigyou K, Tree-Udom T, Jiangchareon B, Chiablaem K, Lirdprapamongkol K, Svasti J, Hamada T, Palaga T, Wanichwecharungruang S (2016) Penetration of oxidized carbon nanospheres through lipid bilayer membrane: com- parison to graphene oxide and oxidized carbon nanotubes, and effects of pH and membrane composition. ACS Appl Mater Interfaces 8:23549-23557
  46. Shafizadeh F (1971) Thermal behavior of carbohydrates. J Polymer Sci C 36:21-51 otwiera się w nowej karcie
  47. Yang ST, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2:271-282 otwiera się w nowej karcie
  48. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30: 6041-6047 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 111 razy

Publikacje, które mogą cię zainteresować

Meta Tagi