Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space - Publication - Bridge of Knowledge

Search

Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space

Abstract

Using the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 28 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS no. 470, edition 1, pages 584 - 598,
ISSN: 0022-247X
Language:
English
Publication year:
2019
Bibliographic description:
Chmara M., Maksymiuk J.: Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space// JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. -Vol. 470, iss. 1 (2019), s.584-598
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jmaa.2018.10.022
Bibliography: test
  1. N. S. Trudinger, An imbedding theorem for H0(G, Ω) spaces, Studia Math. 50 (1974) 17-30. open in new tab
  2. S. Acinas, F. Mazzone, Periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, preprint on ArXiv at https://arxiv.org/abs/1708.06657. open in new tab
  3. S. Acinas, L. Buri, G. Giubergia, F. Mazzone, E. Schwindt, Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015) 681-698. open in new tab
  4. D. Paşca, Z. Wang, On periodic solutions of nonautonomous second order Hamiltonian systems with (q, p)-Laplacian, Electron. J. Qual. Theory Differ. Equ. (2016) Paper No. 106, 9. open in new tab
  5. B. Xu, C.-L. Tang, Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007) 1228-1236. open in new tab
  6. S. Ma, Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems, J. Math. Anal. Appl. 351 (1) (2009) 469-479. open in new tab
  7. J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989. open in new tab
  8. A. Daouas, Existence of homoclinic orbits for unbounded time-dependent p-Laplacian sys- tems, Electron. J. Qual. Theory Differ. Equ. (2016) Paper No. 88, 12. open in new tab
  9. S. Tersian, On symmetric positive homoclinic solutions of semilinear p-laplacian differential equations, Bound Value Probl 2012 (1) (2012) 121. open in new tab
  10. M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamilto- nian systems, J. Diff. Eq. 219 (2) (2005) 375-389. open in new tab
  11. V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (4) (1991) 693-727.
  12. X. Lv, S. Lu, Homoclinic solutions for ordinary p-laplacian systems., Appl Math Comput. 218 (9) (2012) 5682-5692. open in new tab
  13. P. Clément, B. Pagter, G. Sweers, F. Thélin, Existence of solutions to a semilinear elliptic system through orlicz-sobolev spaces, Mediterr. J. Math. 1 (3) (2004) 241-267. open in new tab
  14. G. Barletta, A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Royal Soc. Ed. 147 (1) (2017) 2560. open in new tab
  15. P. Clément, M. Garcí a Huidobro, R. Manásevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (1) (2000) 33- 62. open in new tab
  16. V. K. Le, Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts, Differential Integral Equations 15 (7) (2002) 839-862.
  17. M. A. Krasnoselskiȋ, J. B. Rutickiȋ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
  18. G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl. Math. 50 (4) (2005) 355-386. open in new tab
  19. M. Chmara, J. Maksymiuk, Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl. 456 (1) (2017) 457-475. open in new tab
  20. V. D. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents Vari- ational Methods and Qualitative Analysis, Chapman and Hall/CRC, 2015. open in new tab
  21. V. K. Le, On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal. 44 (1) (2014) 41-72. open in new tab
  22. I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. (N.S.) 63 (105) (1964) 536-553.
  23. L. Maligranda, Orlicz spaces and interpolation, Vol. 5 of Seminários de Matemática [Sem- inars in Mathematics], 1989.
  24. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (4) (1973) 349 -381. open in new tab
  25. F. Clarke, Functional analysis, calculus of variations and optimal control, Vol. 264, Springer, London, 2013. open in new tab
Verified by:
Gdańsk University of Technology

seen 138 times

Recommended for you

Meta Tags