Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator - Publication - Bridge of Knowledge

Search

Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator

Abstract

Using the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions of Ambrosetti-Rabinowitz type.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 43 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS no. 485, pages 1 - 14,
ISSN: 0022-247X
Language:
English
Publication year:
2020
Bibliographic description:
Chmara M., Maksymiuk J.: Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator// JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS -Vol. 485,iss. 2 (2020), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jmaa.2019.123809
Verified by:
Gdańsk University of Technology

seen 148 times

Recommended for you

Meta Tags