Multi-objective optimization of microextraction procedures - Publication - Bridge of Knowledge

Search

Multi-objective optimization of microextraction procedures

Abstract

Optimization of extraction process requiresfinding acceptable conditions for many analytes and goodperformance in terms of process time or solvent consumption. These optimization criteria are oftencontradictory to each other, the performance of the system in given conditions is good for some criteriabut poor for others. Therefore, such problems require special assessment tools that allow to combinethese contradictory criteria into single score tofind“the golden mean”. This contribution summarizes theexamples of approaches that are used for multi-objective optimization. Derringer's desirability functionsare used for large variety of microextraction techniques optimizations. Finding Pareto-optimal solutionsallows to easily separate conditions that are definitely not acceptable. Alternative solution is applicationof multi-criteria decision analysis for microextraction processes optimization.

Citations

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 51 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY pages 266 - 273,
ISSN: 0165-9936
Language:
English
Publication year:
2019
Bibliographic description:
Bystrzanowska M., Tobiszewski M.: Multi-objective optimization of microextraction procedures// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -, iss. 116 (2019), s.266-273
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2018.12.031
Bibliography: test
  1. Servili, M., Selvaggini, R., Taticchi, A., Begliomini, A. L., &Montedoro, G. Relationships between the volatile compounds evaluated by solid phase microextraction and the thermal treatment of tomato juice: optimization of the blanching parameters. Food Chem. 71(3) (2000) 407-415. open in new tab
  2. Heidari, H., &Razmi, H. Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta 99(2012) 13-21. open in new tab
  3. Monteleone, M., Naccarato, A., Sindona, G., &Tagarelli, A. A reliable and simple method for the assay of neuroendocrine tumor markers in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Chim. Acta 759 (2013) 66-73. open in new tab
  4. Pano-Farias, N. S., Ceballos-Magaña, S. G., Muñiz-Valencia, R., Jurado, J. M., Alcázar, Á., & Aguayo-Villarreal, I. A. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS. Food Chem. 237(2017) 30-38. open in new tab
  5. Heidari, H., Razmi, H., &Jouyban, A. Desirability function approach for the optimization of an in- syringe ultrasound-assisted emulsification-microextraction method for the simultaneous determination of amlodipine and nifedipine in plasma samples. J. Separ. Sci. 37(12) (2014) 1467-1474. open in new tab
  6. Vosough, M., Mojdehi, N. R., &Salemi, A. Chemometrics assisted dispersive liquid-liquid microextraction for quantification of seven UV filters in urine samples by HPLC-DAD. J. Separ. Sci. 35(24) (2012) 3575-3585. open in new tab
  7. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol.Comp. 7(2)(2003) 117-132. open in new tab
  8. Li, M., Zhen, L., & Yao, X. How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. open in new tab
  9. IEEE Comp. Intel. Mag. 12(4)(2017) 88-100. open in new tab
  10. Ortiz, M. C., Sarabia, L. A., Sánchez, M. S., & Arroyo, D. Improving the visualization of the Pareto- optimal front for the multi-response optimization of chromatographic determinations. Anal. Chim. Acta 687(2)(2011) 129-136. open in new tab
  11. Morales, R., Sarabia, L. A., Sánchez, M. S., & Ortiz, M. C. Experimental design for the optimization of the derivatization reaction in determining chlorophenols and chloroanisoles by headspace-solid-phase microextraction-gas chromatography/mass spectrometry. J. Chromatogr. A 1296 (2013) 179-195. open in new tab
  12. Arce, M. M., Sanllorente, S., Ortiz, M. C., &Sarabia, L. A. Easy-to-use procedure to optimise a chromatographic method. Application in the determination of bisphenol-A and phenol in toys by means of liquid chromatography with fluorescence detection. J. Chromatogr. A 1534(2018) 93-100. open in new tab
  13. De Aguiar, P. F., Vander Heyden, Y., &Massart, D. L. Study of different criteria for the selection of a rugged optimum in high performance liquid chromatography optimisation. Anal. Chim. Acta 348(1- open in new tab
  14. Arce, M. M., Sanllorente, S., Ortiz, M. C., &Sarabia, L. A. Easy-to-use procedure to optimise a chromatographic method. Application in the determination of bisphenol-A and phenol in toys by means of liquid chromatography with fluorescence detection. J. Chromatogr. A, 1534 (2018) 93-100. open in new tab
  15. Huang, I. B., Keisler, J., &Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci.Total Environ. 409(19) (2011) 3578-3594. open in new tab
  16. Bystrzanowska, M., &Tobiszewski, M. How can analysts use multicriteria decision analysis? Trends Anal. Chem. 105 (2018) 98-105. open in new tab
  17. Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39(17) (2012) 13051-13069. open in new tab
  18. Bigus, P., Namieśnik, J., &Tobiszewski, M. Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid-liquid microextraction. J. Chromatogr. A 1446 (2016) 21-26. open in new tab
  19. Bystrzanowska, M., Marcinkowska, R., Pena-Pereira, F., &Tobiszewski, M. Selection of derivatisation agents for chlorophenols determination with multicriteria decision analysis. Microchem. J.145 (2019). 664-671. open in new tab
  20. Bigus, P., Namieśnik, J., &Tobiszewski, M. Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction optimization for chlorophenols determination. J. Chromatogr. A 1553 (2018) 25-31. open in new tab
Verified by:
Gdańsk University of Technology

seen 104 times

Recommended for you

Meta Tags