Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography - Publication - Bridge of Knowledge

Search

Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography

Abstract

In this paper, a condition assessment of masonry pillars is presented. Non-destructive tests were performed on an intact pillar as well as three pillars with internal inclusions in the form of a hole, a steel bar grouted by gypsum mortar, and a steel bar grouted by cement mortar. The inspection utilized ultrasonic stress waves and the reconstruction of the velocity distribution was performed by means of computed tomography. The results showed the possibilities of tomographic imaging in characterizing the internal structure of pillars. Particular attention was paid to the assessment of the adhesive connection between a steel reinforcing bar, embedded inside pillars, and the surrounding pillar body.

Citations

  • 4 0

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Cite as

Full text

download paper
downloaded 57 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 11, edition 12, pages 1 - 16,
ISSN: 1996-1944
Language:
English
Publication year:
2018
Bibliographic description:
Zielińska M., Rucka M.: Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography// Materials. -Vol. 11, iss. 12 (2018), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma11122543
Bibliography: test
  1. Rucka; Validation, Magdalena Rucka;
  2. Visualization, Monika Zielińska; Writing -original draft, Monika Zielińska; Writing -review and editing, Magdalena Rucka.
  3. Binda, L.; Saisi, A.; Tiraboschi, C. Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 2000, 14, 199-233, doi:10.1016/S0950-0618(00)00018-0. open in new tab
  4. Piroglu, F.; Ozakgul, K. Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey. Nat. Hazards Earth Syst. Sci. 2013, 13, 689-708, doi:10.5194/nhess-13-689-2013. open in new tab
  5. Jasiński, R.; Drobiec, Ł. Comparison Research of Bed Joints Construction and Bed Joints Reinforcement on Shear Parameters of AAC Masonry Walls. J. Civ. Eng. Archit. 2016, 10, 1329-1343, doi:10.17265/1934-7359/2016.12.004. open in new tab
  6. Vasanelli, E.; Sileo, M.; Leucci, G.; Calia, A.; Aiello, M.A.; Micelli, F. Mechanical characterization of building stones through DT and NDT tests: research of correlations for the in situ analysis of ancient masonry. Key Eng. Mater. 2015, 628, 85-89, doi:10.4028/www.scientific.net/KEM.628.85. open in new tab
  7. McCann, D.M.; Forde, M.C. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71-84, doi:10.1016/S0963-8695(00)00032-3. open in new tab
  8. Schuller, M.P. Nondestructive testing and damage assessment of masonry structures. 2003, 239-251, doi:10.1002/pse.160. open in new tab
  9. Paasche, H.; Wendrich, A.; Tronicke, J.; Trela, C. Detecting voids in masonry by cooperatively inverting P-wave and georadar traveltimes. 2008, 5, 256-267, doi:10.1088/1742-2132/5/3/002. open in new tab
  10. Bosiljkov, V.; Uranjek, M.; Žarnić, R.; Bokan-Bosiljkov, V. An integrated diagnostic approach for the assessment of historic masonry structures. J. Cult. Herit. 2010, 11, 239-249, doi:10.1016/j.culher.2009.11.007. open in new tab
  11. Santos-Assunçao, S.; Perez-Gracia, V.; Caselles, O.; Clapes, J.; Salinas, V. Assessment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens. 2014, 6, 8220-8237, doi:10.3390/rs6098220. open in new tab
  12. Khan, F.; Rajaram, S.; Vanniamparambil, P.A.; Bolhassani, M.; Hamid, A.; Kontsos, A.; Bartoli, I. Multi-sensing NDT for damage assessment of concrete masonry walls. Struct. Control Heal. Monit. 2015, 22, 449-462, doi:10.1002/stc. open in new tab
  13. Micelli, F.; Cascardi, A.; Marsano, M. Seismic strengthening of a theatre masonry building by using active FRP wires. In Brick and Block Masonry: Proceedings of the 16th International Brick and Block Masonry Conference; CRC Press: Padova, 2016; pp. 753-761. open in new tab
  14. La Mendola, L.; Lo Giudice, E.; Minafò, G. Experimental calibration of flat jacks for in-situ testing of masonry. Int. J. Archit. Herit. 2018, doi:10.1080/15583058.2018.1453886. open in new tab
  15. Rucka, M.; Lachowicz, J.; Zielińska, M. GPR investigation of the strengthening system of a historic masonry tower. J. Appl. Geophys. 2016, 131, 94-102, doi:10.1016/j.jappgeo.2016.05.014. open in new tab
  16. Lachowicz, J.; Rucka, M. Diagnostics of pillars in St. Mary's Church (Gdańsk, Poland) using the GPR method. Int. J. Archit. Herit. 2018, 00, 1-11, doi:10.1080/15583058.2018.1501117. open in new tab
  17. Paganoni, S.; D'Ayala, D. Testing and design procedure for corner connections of masonry heritage buildings strengthened by metallic grouted anchors. Eng. Struct. 2014, 70, 278-293, doi:10.1016/j.engstruct.2014.03.014. open in new tab
  18. Collini, L.; Fagiani, R.; Garziera, R.; Riabova, K.; Vanali, M. Load and effectiveness of the tie-rods of an ancient Dome: Technical and historical aspects. J. Cult. Herit. 2015, 16, 597-601, doi:10.1016/j.culher.2014.09.008. open in new tab
  19. Ural, A.; Firat, F.K.; Tuğrulelçi, S.; Kara, M.E. Experimental and numerical study on effectiveness of various tie-rod systems in brick arches. Eng. Struct. 2016, 110, 209-221, doi:10.1016/j.engstruct.2015.11.038. open in new tab
  20. Pisani, M.A. Theoretical approach to the evaluation of the load-carrying capacity of the tie rod anchor system in a masonry wall. Eng. Struct. 2016, 124, 85-95, doi:10.1016/j.engstruct.2016.06.015. open in new tab
  21. Ombres, L.; Verre, S. Masonry columns strengthened with Steel Fabric Reinforced Cementitious Matrix (S-FRCM) jackets: Experimental and numerical analysis. Measurement 2018, 127, 238-245, doi:10.1016/j.measurement.2018.05.114. open in new tab
  22. Micelli F., Cascardi A., A.M.A. A study on FRP-confined concrete in presence of different preload levels. In Proceedings of 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering -CICE 2018; 2018; pp. 493-499.
  23. Ferrotto, M.F.; Fischer, O.; Cavaleri, L.A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload. Eng. Struct. 2018, 173, 1054-1067, doi:10.1016/j.engstruct.2018.07.047. open in new tab
  24. Rao, J.; Ratassepp, M.; Lisevych, D.; Hamzah Caffoor, M.; Fan, Z. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors. Sensors 2017, 17, 2882, doi:10.3390/s17122882. open in new tab
  25. Zhao, X.; Royer, R.L.; Owens, S.E.; Rose, J.L. Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater. Struct. 2011, 20, 105002, doi:10.1088/0964-1726/20/10/105002. open in new tab
  26. Leonard, K.R.; Malyarenko, E.V.; Hinders, M.K. Ultrasonic Lamb wave tomography. Inverse Probl. 2002, 18, 1795-1808, doi:10.1088/0266-5611/18/6/322. open in new tab
  27. Prasad, S.M.; Balasubramaniam, K.; Krishnamurthy, C.V. Structural health monitoring of composite structures using Lamb wave tomography. Smart Mater. Struct. 2004, 13, N73-N79, doi:10.1088/0964-1726/13/5/N01. open in new tab
  28. Martin, J.; Broughton, K.J.; Giannopolous, A.; Hardy, M.S.A.; Forde, M.C. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int. 2001, 34, 107-113, doi:10.1016/S0963-8695(00)00035-9. open in new tab
  29. Chai, H.K.; Liu, K.F.; Behnia, A.; Yoshikazu, K.; Shiotani, T. Development of a tomography technique for assessment of the material condition of concrete using optimized elastic wave parameters. Materials (Basel). 2016, 9, 291, doi:10.3390/ma9040291. open in new tab
  30. Chai, H.K.; Momoki, S.; Kobayashi, Y.; Aggelis, D.G.; Shiotani, T. Tomographic reconstruction for concrete using attenuation of ultrasound. NDT E Int. 2011, 44, 206-215, doi:10.1016/j.ndteint.2010.11.003. open in new tab
  31. Aggelis, D.G.; Tsimpris, N.; Chai, H.K.; Shiotani, T.; Kobayashi, Y. Numerical simulation of elastic waves for visualization of defects. Constr. Build. Mater. 2011, 25, 1503-1512, doi:10.1016/j.conbuildmat.2010.08.008. open in new tab
  32. Schabowicz, K.; Suvorov, V.A. Nondestructive testing of a bottom surface and construction of its profile by ultrasonic tomography. Russ. J. Nondestruct. Test. 2014, 50, 109-119, doi:10.1134/S1061830914020089. open in new tab
  33. Schabowicz, K. Ultrasonic tomography -The latest nondestructive technique for testing concrete members -Description, test methodology, application example. Arch. Civ. Mech. Eng. 2014, 14, 295-303, doi:10.1016/j.acme.2013.10.006. open in new tab
  34. Haach, V.G.; Ramirez, F.C. Qualitative assessment of concrete by ultrasound tomography. Constr. Build. Mater. 2016, 119, 61-70, doi:10.1016/j.conbuildmat.2016.05.056. open in new tab
  35. Choi, H.; Popovics, J.S. NDE application of ultrasonic tomography to a full-scale concrete structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1076-1085, doi:10.1109/TUFFC.2014.006962. open in new tab
  36. Choi, H.; Ham, Y.; Popovics, J.S. Integrated visualization for reinforced concrete using ultrasonic tomography and image-based 3-D reconstruction. Constr. Build. Mater. 2016, 123, 384-393, doi:10.1016/j.conbuildmat.2016.07.010. open in new tab
  37. Schullerl, M.; Berra, M.; Atkinson, R.; Binda, L. Acoustic tomography for evaluation of unreinforced masonry. Constr. Build. Makrials 1997, 11, 199-204. open in new tab
  38. Binda, L.; Saisi, A.; Zanzi, L. Sonic tomography and flat-jack tests as complementary investigation procedures for the stone pillars of the temple of S. Nicolo 1'Arena (Italy). NDT E Int. 2003, 36, 215-227, doi:10.1016/S0963-8695(02)00066-X. open in new tab
  39. Pérez-Gracia, V.; Caselles, J.O.; Clapés, J.; Martinez, G.; Osorio, R. Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT E Int. 2013, 59, 40-47, doi:10.1016/j.ndteint.2013.04.014. open in new tab
  40. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; The Institiute of Electrical and Electronics Engineers, Inc.: New York, 1988; open in new tab
  41. Oliveira, E.F.; Dantas, C.C.; Vasconcelos, D.A.A.; Cadiz, F. Comparison Among Tomographic Reconstruction Algorithms With a Limited Data. Int. Nucl. Atl. Conf. -Ina. 2011.
  42. Lu, X.; Sun, Q.; Feng, W.; Tian, J. Evaluation of dynamic modulus of elasticity of concrete using impact-echo method. Constr. Build. Mater. 2013, 47, 231-239, doi:10.1016/j.conbuildmat.2013.04.043. open in new tab
  43. Wȩglewski, W.; Bochenek, K.; Basista, M.; Schubert, T.; Jehring, U.; Litniewski, J.; Mackiewicz, S. Comparative assessment of Young's modulus measurements of metal-ceramic composites using mechanical and non-destructive tests and micro-CT based computational modeling. Comput. Mater. Sci. 2013, 77, 19-30, doi:10.1016/j.commatsci.2013.04.007. open in new tab
  44. Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete. Constr. Build. Mater. 2018, 181, 447-454, doi:10.1016/j.conbuildmat.2018.06.060. open in new tab
  45. Alberto, A.; Antonaci, P.; Valente, S. Damage analysis of brick-to-mortar interfaces. Procedia Eng. 2011, 10, 1151-1156, doi:10.1016/j.proeng.2011.04.191. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 169 times

Recommended for you

Meta Tags