Abstract
The fundamental motivation of this research is to investigate the effect of flexoelectricity on a piezoelectric nanobeam for the first time involving internal viscoelasticity. To date, the effect of flexoelectricity on the mechanical behavior of nanobeams has been investigated extensively under various physical and environmental conditions. However, this effect as an internal property of materials has not been studied when the nanobeams include an internal damping feature. To this end, a closed-circuit condition is considered taking converse piezo–flexoelectric behavior. The kinematic displacement of the classical beam using Lagrangian strains, also applying Hamilton’s principle, creates the needed frequency equation. The natural frequencies are measured in nanoscale by the available nonlocal strain gradient elasticity model. The linear Kelvin–Voigt viscoelastic model here defines the inner viscoelastic coupling. An analytical solution technique determines the values of the numerical frequencies. The best findings show that the viscoelastic coupling can directly affect the flexoelectricity property of the material.
Citations
-
5 7
CrossRef
-
0
Web of Science
-
6 2
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Symmetry-Basel
no. 12,
pages 1 - 21,
ISSN: 2073-8994 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Malikan M., Eremeev V.: On the Dynamics of a Visco–Piezo–Flexoelectric Nanobeam// Symmetry-Basel -Vol. 12,iss. 4 (2020), s.1-21
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/sym12040643
- Verified by:
- Gdańsk University of Technology
seen 150 times
Recommended for you
Effect of Simultaneous Valve Closures in Hydraulic Piping Systems
- K. Urbanowicz,
- I. Haluch,
- A. Bergant
- + 2 authors
The Influence of External Load on the Performance of Microbial Fuel Cells
- S. Potrykus,
- L. Fernando Luis,
- J. Nieznański
- + 2 authors