Quantitative fluorescent determination of DNA – Ochratoxin a interactions supported by nitrogen-vacancy rich nanodiamonds
Abstract
Ochratoxin A (OTA) is a hazardous contaminant of a large variety of plant and animal originated food. Herein, we report an interaction of OTA with calf thymus DNA (ct DNA) on the nanodiamond surface. We employed multispectroscopic techniques to elucidate the binding mechanism of OTA with ct DNA. The fluorescence and UV–Vis spectroscopy results show that OTA binds to ds ct DNA and forms complexes. We obtained the binding constants of OTA and ct DNA using fluorescence quenching and UV–Vis spectroscopy. The binding constant (Kb) for the interaction of OTA with ct DNA was determined using spectroscopic methods and was determined as 3.27 × 105 M−1 (UV–Vis) and 8.12 × 105 M−1 (fluorescence) for nanodiamond in green tea beverage OTA. Performed analyses directly indicate that OTA can interact with calf thymus DNA in a groove-binding mode as proved by the hyperchromic effect of the absorption spectra. This study of OTA–ct DNA interaction may provide novel insights into the toxicological effect of the mycotoxins.
Citations
-
5
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (10)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.molliq.2021.117338
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
JOURNAL OF MOLECULAR LIQUIDS
no. 342,
ISSN: 0167-7322 - Language:
- English
- Publication year:
- 2021
- Bibliographic description:
- Białobrzeska W., Głowacki M., Janik M., Ficek M., Pyrchla K., Mirosław S., Bogdanowicz R., Malinowska N., Żołędowska S., Nidzworski D.: Quantitative fluorescent determination of DNA – Ochratoxin a interactions supported by nitrogen-vacancy rich nanodiamonds// JOURNAL OF MOLECULAR LIQUIDS -Vol. 342, (2021), s.117338-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.molliq.2021.117338
- Verified by:
- Gdańsk University of Technology
seen 144 times
Recommended for you
Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex
- A. Gilewska,
- J. Masternak,
- K. Kazimierczuk
- + 3 authors
Photosensitive and pH-dependent activity of pyrazine-functionalized carbazole derivative as promising antifungal and imaging agent
- A. Chylewska,
- A. Dąbrowska,
- S. Ramotowska
- + 4 authors
Synthesis, physicochemical and theoretical studies on new rhodium and ruthenium dimers. Relationship between structure and cytotoxic activity
- J. Masternak,
- A. Gilewska,
- K. Kazimierczuk
- + 4 authors