Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition - Publication - Bridge of Knowledge

Search

Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition

Abstract

One way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin by fluorescence studies and cytotoxic measurements showed that the biological activity both the transferrin and doxorubicin was fully retained in the nanoconjugate. In particular, the intercalation capabilities of free doxorubicin versus ctDNA remained essentially intact upon its binding to the nanoconjugate. In order to evaluate these capabilities, we studied the binding constant of doxorubicin attached to Tf-QD with ctDNA as well as the binding site size on the ctDNA molecule. The binding constant slightly decreased compared to that of free doxorubicin while the binding site size, describing the number of consecutive DNA lattice residues involved in the binding, increased. It was also demonstrated that QD alone and in the form of nanoconjugate with Tf were not cytotoxic towards human non-small cell lung carcinoma (H460 cell line) and the tumor cell sensitivity of the DOX-Tf-QD nanoconjugate was comparable to that of doxorubicin alone.

Citations

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 40 times
Publication version
Accepted or Published Version
License
Copyright (Royal Society of Chemistry 2018)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
NANOSCALE no. 10, edition 3, pages 1286 - 1296,
ISSN: 2040-3364
Language:
English
Publication year:
2018
Bibliographic description:
Matysiak-Brynda E., Bujak P., Augustin E., Kowalczyk A., Mazerska Z., Pron A., Nowicka a.: Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition// NANOSCALE. -Vol. 10, iss. 3 (2018), s.1286-1296
DOI:
Digital Object Identifier (open in new tab) 10.1039/c7nr07819f
Bibliography: test
  1. R. A. Petros and J. M. DeSimone, Nat. Rev. Drug Discovery 2010, 9, 615. open in new tab
  2. G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke and H. Dai, Nat. Med., 2012, 18, 1841. open in new tab
  3. R. J. Clifford and J. H. Kaplan, PLoS One, 2013, 8, e84306. open in new tab
  4. A. K. Das, Ann. Med. Health Sci. Res., 2015, 5, 93. open in new tab
  5. S. Kosugi, M. Hasebe, N. Matsumura, H. Takashima, E. Miyamoto-Sato, M. Tomita and H. Yanagawa, J. Biol. Chem., 2009, 284, 478. open in new tab
  6. R. Misra and S. K. Sahoo, Europ. J. Pharm. Sci., 2010, 39, 152. open in new tab
  7. J. Yu, X. Xie, M. Zheng, L. Yu, L. Zhang, J. Zhao, D. Jiang and X. Che, Int. J. Nanomedicine, 2012, 7, 5079. open in new tab
  8. T.R. Daniels, T. Delgado, G. Helguera and M. L. Penichet, Clin. Immunol., 2006, 121, 159. open in new tab
  9. F. Okazaki, N. Matsunaga, H. Okazaki, N. Utoguchi, R. Suzuki, K. Maruyama, S. Koyanagi and S. Ohdo, Cancer Res., 2010, 70, 6238. open in new tab
  10. J. L. Heath, J. M. Weiss, C. P. Lavau and D. S. Wechsler, Nutrients, 2013, 5, 2836. open in new tab
  11. Q. Y. He, A. B. Mason, R. C. Woodworth, B. M. Tam, R. T. MacGillivray, J. K. Grady and N. D. Chasteen, Biochemistry, 1997, 36, 14853. open in new tab
  12. Y. Cheng, O. Zak, P. Aisen, S. C. Harrison and T. Walz, Cell, 2004, 116, 565. open in new tab
  13. J. Wall, P. J. Halbrooks, C. Vonrhein, M. A. Rould, S. J; Everse, A. B. Mason and S. K. Buchanan, J. Biol. Chem., 2006, 281, 24934. open in new tab
  14. A. Bhattacharya, S. Chatterjee, V. Khorwal and T. K. Mukherjee, Phys. Chem. Chem. Phys., 2016, 18, 5148. open in new tab
  15. L. B. Chen, F. Zhang and C. C. Wang, Small, 2009, 5, 621. open in new tab
  16. H. Yukawa, R. Tsukamoto, A. Kano, Y. Okamoto, M. Tokeshi, T. Ishikawa, M. Mizuno and Y. Baba, J. Cell Sci. Ther., 2013, 4, 150. open in new tab
  17. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei and C. Burda, J. Am. Chem. Soc., 2008, 130, 10643. open in new tab
  18. L.-Y. Guan, Y.-Q. Li, S. Lin, M.-Z. Zhang, J. Chen, Z.-Y. Ma and Y.-D. Zhao, Anal. Chim. Acta, 2012, 741, 86. open in new tab
  19. P. Zrazhevskiy, M. Sena and X. Gao, Chem. Soc. Rev., 2010, 39, 4326. open in new tab
  20. G. Palui, F. Aldeek, W. Wang and H. Mattoussi, Chem. Soc. Rev., 2015, 44, 193. open in new tab
  21. S. Goy-Lopez, J. Juarez, M. Alatorre-Meda, E. Casals, V. F. Puntes, P. Taboada and V. Mosqera, Langmuir, 2012, 28, 9113. open in new tab
  22. S. Chakraborti, S. Sarwar and P. Chakrabarti, J. Phys. Chem. B, 2013, 117, 13397. open in new tab
  23. A. Lesniak, F. Fenaroli, M. P. Monopoli, C. Aberg, K. A. Dawson and A. Salvati, ACS Nano, 2012, 6, 5845. open in new tab
  24. S. Chatterjee and T. K. Mukherjee, Phys. Chem. Chem. Phys., 2014, 16, 8400. open in new tab
  25. A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4, 11. open in new tab
  26. L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M. T. Swihart and P. N. A Prasad, Nat. Nanotechnol., 2012, 7, 453. open in new tab
  27. D. Aldakov, A. Lefrançois and P. Reiss, J. Mater. Chem. C, 2013, 1, 3756. open in new tab
  28. P. Reiss, M. Carrière, C. Lincheneau, L. Vaure and S. Tamang, Chem. Rev., 2016, 116, 10731. open in new tab
  29. G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K.-T. Yong and P. N. Prasad, Chem. Rev., 2016, 116, 12234. open in new tab
  30. P. Bujak, Synth. Met., 2016, 222, 93. open in new tab
  31. J. M. Klostranec and W. C. W. Chan, Adv. Mater., 2006, 18, 1953. open in new tab
  32. L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem and P. Reiss, Chem. Mater., 2009, 21, 2422. open in new tab
  33. P. Subramaniam, S. J. Lee, S. Shah, S. Patel, V. Starovoytov and K.-B. Lee, Adv. Mater., 2012, 24, 4014. open in new tab
  34. J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin and J.-C. Hsu, J. Mater. Chem., 2012, 22, 10609. open in new tab
  35. M. D. Regulacio, K. Y. Win, S. L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han and Y. Zheng, Nanoscale, 2013, 5, 2322. open in new tab
  36. M. Z. Fahmi and J.-Y. Chang, Nanoscale, 2013, 5, 1517. open in new tab
  37. D. Deng, J. Cao, L. Qu, S. Achilefu and Y. Gu, Phys. Chem. Chem. Phys., 2013, 15, 5078. open in new tab
  38. H. Shinchi, M. Wakao, N. Nagata, M. Sakamoto, E. Mochizuki, T. Uematsu, S. Kuwabata and Y. Suda, Bioconjugate Chem., 2014, 25, 286. open in new tab
  39. J. Song, C. Ma, W. Zhang, X. Li, W. Zhang, R. Wu, X. Cheng, A. Ali, M. Yang, L. Zhu, R. Xia and X. Xu, ACS Appl. Mater. Interfaces, 2016, 8, 24826. open in new tab
  40. T.-T. Xuan, J.-Q. Liu, C.-Y. Yu, R.-J. Xie and H.-L. Li, Sci. Rep., 2016, 6, 24459. open in new tab
  41. T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F. Marchal and B. Dubertret, ACS Nano, 2010, 4, 2531. open in new tab
  42. L. Li, R. Hu, I. Roy, G. Lin, L. Ye, J. L. Reynolds, J. Liu, J. Liu, S. A. Schwartz, X. Zhang and K.-T. Yong, Theranostics, 2013, 3, 109. open in new tab
  43. L. Tan, S. Liu, X. Li, I. S. Chronakis and Y. Shen, Colloids Surf. B, 2015, 125, 222. open in new tab
  44. Y. Ogihara, H. Yukawa, T. Kameyama, H. Nishi, D. Onoshima, T. Ishikawa, T. Torimoto and Y. Baba, Sci. Rep., 2017, 7, 40047. open in new tab
  45. G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus and A. Pron, Inorg. Chem., 2014, 53, 5002. open in new tab
  46. G. Gabka, P. Bujak, K. Kotwica, A. Ostrowski, W. Lisowski, J. W. Sobczak and A. Pron, Phys. Chem. Chem. Phys., 2017, 19, 1217. open in new tab
  47. Z. Liu, J. T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 2008, 130, 10876. open in new tab
  48. Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati and X. Chen, Chem. Commun., 2012, 48, 9768. open in new tab
  49. Y. Wang, J. T. Chen and X. P. Yan, Anal. Chem, 2013, 85, 2529. open in new tab
  50. A. G. Hovanessian and Z. L. Awdeh, Eur. J. Biochem., 1976, 68, 333. open in new tab
  51. G. Xu, R. Liu, O. Zak, P. Aisen and M. R. Chance, Mol. Cell. Proteomics, 2005, 4, 1959. open in new tab
  52. A. Berczi, K. Barabas, J. A. Sizensky and W. P. Faulk, Arch. Biochem. Biophys. 1993, 300, 356. open in new tab
  53. G. Gabka, P. Bujak, M. Gryszel, K. Kotwica and A. Pron, J. Phys. Chem. C, 2015, 119, 9656. open in new tab
  54. A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, J. Am. Chem. Soc., 1989, 111, 3051. open in new tab
  55. N. Li, Y. Ma, Ch. Yang, L. Guo and X. Yang, Biophys. Chem., 2005, 116, 199. open in new tab
  56. M. A. Komorowska and S. Olsztynska-Janus, Biomedical Engineering, Trends, Research and Technologies, InTech, Rijeka, 2011. open in new tab
  57. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, Baltimore, 2010. open in new tab
  58. W. Zhong, J.-S. Yu, W. Huang, K. Ni and Y. Liang, Biopolymers, 2001, 62, 315. open in new tab
  59. B. A. Wallace, J. Synchrotron Rad., 2000, 7, 289. open in new tab
  60. Z. M. Shen, J. T. Yang, Y.-M. Feng and Ch.-S. C. Wu, Protein Sci., 1992, 1, 1477. open in new tab
  61. F. Kilar and I. Simon, Biophys. J., 1985, 48, 799. open in new tab
  62. S. Krimm and J. Bandekar, Adv. Protein Chem., 1986, 38, 181. open in new tab
  63. J. Banker, Biochim. Biophys. Acta, 1992, 1120, 123. open in new tab
  64. J. Kong and S. Yu, Acta Biochim. Biophys. Sin., 2007, 39, 549. open in new tab
  65. A.K. Saini, C.M. Carlin and H.H. Patterson, J. Polym. Sci. A, 1993, 31, 2751. open in new tab
  66. M. Bodnar, J.F. Hartmann and J. Borbely, Biomacromol., 2006, 7, 3030. open in new tab
  67. L. Marin, E. Perju and D. Damaceanu, Eur. Polym. J., 2011, 47, 1284. open in new tab
  68. L. Marin, A. Zabulica and M. Sava, Liq. Cryst., 2011, 38, 433. open in new tab
  69. L. Marin, B. Simionescu and M. Barboiu, Chem. Commun., 2012, 48, 8778. open in new tab
  70. A. M. Oliveira-Brett, V. C. Diculescu and J. A. P. Piedade, Bioelectrochem., 2002, 55, 61. open in new tab
  71. A. M. Oliveira-Brett, J. A. P. Piedade, L. A. Silva and V. C. Diculescu, Anal. Biochem., 2004, 332, 321. open in new tab
  72. M. Potmesil, M. Izrael and R. Silber, Biochem. Pharmacol., 1984, 33, 3137. open in new tab
  73. A. J. Birtle, Clin. Oncol., 2000, 12, 146. open in new tab
  74. A. Kowalczyk, A. M. Nowicka, M. Karbarz and Z. Stojek, Anal. Bioanal. Chem., 2008, 392, 463. open in new tab
  75. A. M. Nowicka, A. Kowalczyk, A. Jarzebinska, M. Donten, P. Krysinski, Z. Stojek, E. Augustin and Z. Mazerska, Biomacromolecules, 2013, 14, 828. open in new tab
  76. J. W. Lowen, Anthracycline and Anthracenechone Based Anticancer Agents, Elsevier, Amsterdam, 1988.
  77. J. D. McGhee and P. H. von Hippel, J. Mol. Biol., 1974, 86, 469. open in new tab
  78. M. Satyajit, J. F. Presley and F. R. Maxfield, J. Cell. Biol., 1993, 121, 1257.
  79. F. R. Maxfield and T. E. McGraw, Nat. Rev. Mol. Cell Biol., 2004, 5, 121. open in new tab
  80. E. Augustin, B. Czubek, A. M. Nowicka, A. Kowalczyk, Z. Stojek, Z. Mazerska, Toxicol. in Vitro, 2016, 33, 45. open in new tab
Verified by:
Gdańsk University of Technology

seen 139 times

Recommended for you

Meta Tags