Abstract
Carbon nanowalls (CNWs) have attracted much attention for numerous applications in electrical devices because of their peculiar structural characteristics. However, it is possible to set synthesis parameters to vary the electrical and optical properties of such CNWs. In this paper, we demonstrate the direct growth of highly transparent boron-doped nanowalls (B-CNWs) on optical grade fused quartz. The effect of growth temperature and boron doping on the behavior of boron-doped carbon nanowalls grown on quartz was studied in particular. Temperature and boron inclusion doping level allow for direct tuning of CNW morphology. It is possible to operate with both parameters to obtain a transparent and conductive film; however, boron doping is a preferred factor to maintain the transparency in the visible region, while a higher growth temperature is more effective to improve conductance. Light transmittance and electrical conductivity are mainly influenced by growth temperature and then by boron doping. Tailoring B-CNWs has important implications for potential applications of such electrically conductive transparent electrodes designed for energy conversion and storage devices.
Citations
-
1 7
CrossRef
-
0
Web of Science
-
1 8
Scopus
Authors (7)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/ma12030547
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Materials
no. 12,
pages 1 - 13,
ISSN: 1996-1944 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Pierpaoli M., Ficek M., Rycewicz M., Sawczak M., Karczewski J., Ruello M. L., Bogdanowicz R.: Tailoring Electro/Optical Properties of Transparent Boron-Doped Carbon Nanowalls Grown on Quartz// Materials. -Vol. 12, iss. 3 (2019), s.1-13
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/ma12030547
- Sources of funding:
-
- The financial support received from the Polish National Science Centre (NCN) under grant nos. 2016/21/B/ST7/01430, 2016/22/E/ST7/00102, and 2014/14/M/ST5/00715. This work was partially supported by the Science for Peace Program of NATO (grant no. G5147).
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 183 times
Recommended for you
Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures
- M. Pierpaoli,
- A. Lewkowicz,
- M. Rycewicz
- + 3 authors
Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates
- M. Sobaszek,
- K. Siuzdak,
- Ł. Skowroński
- + 2 authors