Thermohydraulic maldistribution reduction in mini heat exchangers - Publication - Bridge of Knowledge

Search

Thermohydraulic maldistribution reduction in mini heat exchangers

Abstract

A detailed numerical investigation has been carried out to analyze the flow maldistribution in 50 parallel 1 mm × 1 mm rectangular minichannels and 1 mm depth minigap section with rectangular, trapezoidal, triangular or concave manifolds in Z-type flow configuration. The working medium was ethanol and the mass flow rate was 5 × 10−4 kg/s. Both sections were heated from the bottom side. Heat flux of 10 000 W/m2 and 5000 W/m2 was applied to the minichannel and minigap section respectively. The method of the flow maldistribution mitigation in the diabatic flow has been checked. Thanks to introducing a threshold, the maldistribution coefficient can be reduced about twice in the minigap section or three times in the minichannel section with the 0.5 mm threshold as compared to the conventional arrangement. The velocity profile and temperature profile over the heat exchanger’s surface have been analyzed. Reduction of the maldistribution results in lower maximum temperature over the surface. The distribution is more uniform in the minichannel section than in the minigap section. This is due to a two-dimensional flow over a minigap. Hence, a two-dimensional approach to define maldistribution coefficients in minigap sections, which has not been distinguished in literature yet was used.

Citations

  • 1 6

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APPLIED THERMAL ENGINEERING no. 173, pages 1 - 17,
ISSN: 1359-4311
Language:
English
Publication year:
2020
Bibliographic description:
Dąbrowski P.: Thermohydraulic maldistribution reduction in mini heat exchangers// APPLIED THERMAL ENGINEERING -Vol. 173, (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.applthermaleng.2020.115271
Bibliography: test
  1. D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2 (1981) 126-129. doi:10.1109/EDL.1981.25367. open in new tab
  2. M. Bahreini, A. Ramiar, A.A. Ranjbar, Numerical simulation of subcooled flow boiling under conjugate heat transfer and microgravity condition in a vertical mini channel, Appl. Therm. Eng. 113 (2017) 170-185. doi:10.1016/j.applthermaleng.2016.11.016. open in new tab
  3. J. Zhou, X. Zhao, X. Ma, Z. Du, Y. Fan, Y. Cheng, X. Zhang, Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump, Sol. Energy. 155 (2017) 464-477. doi:10.1016/j.solener.2017.06.056. open in new tab
  4. D. Mikielewicz, J. Mikielewicz, A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP, Appl. Therm. Eng. 30 (2010) 2357-2362. doi:10.1016/j.applthermaleng.2010.05.035. open in new tab
  5. K. Sakamatapan, S. Wongwises, Pressure drop during condensation of R134a flowing inside a multiport minichannel, Int. J. Heat Mass Transf. 75 (2014) 31-39. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.071. open in new tab
  6. M. Najim, M.B. Feddaoui, New cooling approach using successive evaporation and condensation of a liquid film inside a vertical mini-channel, Int. J. Heat Mass Transf. 122 (2018) 895-912. doi:10.1016/j.ijheatmasstransfer.2018.02.034. open in new tab
  7. M. Khoshvaght-Aliabadi, M. Sahamiyan, M. Hesampour, O. Sartipzadeh, Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink, Appl. Therm. Eng. 92 (2016) 50-61. doi:10.1016/j.applthermaleng.2015.09.015. open in new tab
  8. C. Qi, X. Chen, W. Wang, J. Miao, H. Zhang, Experimental investigation on flow condensation heat transfer and pressure drop of nitrogen in horizontal tubes, Int. J. Heat Mass Transf. 132 (2019) 985-996. doi:10.1016/j.ijheatmasstransfer.2018.11.092. open in new tab
  9. J.R. García-Cascales, F. Illán-Gómez, F. Hidalgo-Mompeán, F.A. Ramírez-Rivera, M.A. Ramírez-Basalo, Performance comparison of an air/water heat pump using a minichannel coil as evaporator in replacement of a fin-and-tube heat exchanger, Int. J. Refrig. 74 (2017) 558- 573. doi:10.1016/j.ijrefrig.2016.11.018. open in new tab
  10. C. Pistoresi, Y. Fan, L. Luo, Numerical study on the improvement of flow distribution uniformity among parallel mini-channels, Chem. Eng. Process. Process Intensif. 95 (2015) 63- 71. doi:https://doi.org/10.1016/j.cep.2015.05.014. open in new tab
  11. C. Amador, A. Gavriilidis, P. Angeli, Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage, Chem. Eng. J. 101 (2004) 379-390. doi:10.1016/j.cej.2003.11.031. open in new tab
  12. H. Yang, J. Wen, X. Gu, Y. Liu, S. Wang, W. Cai, Y. Li, A mathematical model for flow maldistribution study in a parallel plate-fin heat exchanger, Appl. Therm. Eng. 121 (2017) 462-472. doi:10.1016/j.applthermaleng.2017.03.130. open in new tab
  13. S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat Exchangers, Boca Raton: CRC Press, 2002. doi:10.1201/9781420053746. open in new tab
  14. P. Dąbrowski, M. Klugmann, D. Mikielewicz, Channel Blockage and Flow Maldistribution during Unsteady Flow in a Model Microchannel Plate heat Exchanger, J. Appl. Fluid Mech. 12 (2019) 1023-1035. doi:10.29252/jafm.12.04.29316. open in new tab
  15. A.A.Y. Al-Waaly, M.C. Paul, P. Dobson, Liquid cooling of non-uniform heat flux of a chip circuit by subchannels, Appl. Therm. Eng. 115 (2017) 558-574. doi:10.1016/j.applthermaleng.2016.12.061. open in new tab
  16. V. Manoj Siva, A. Pattamatta, S.K. Das, Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems, Int. J. Heat Mass Transf. 73 (2014) 424-428. doi:10.1016/j.ijheatmasstransfer.2014.02.017. open in new tab
  17. J. Kim, J.H. Shin, S. Sohn, S.H. Yoon, Analysis of non-uniform flow distribution in parallel micro-channels, J. Mech. Sci. Technol. 33 (2019) 3859-3864. doi:10.1007/s12206-019-0729-8. open in new tab
  18. H. Li, P. Hrnjak, Quantification of liquid refrigerant distribution in parallel flow microchannel heat exchanger using infrared thermography, Appl. Therm. Eng. 78 (2015) 410-418. doi:10.1016/j.applthermaleng.2015.01.003. open in new tab
  19. V. Singh, H. Kumar, S.S. Sehgal, R. Kukreja, Effect of Plenum Shape on Thermohydraulic Performance of Microchannel Heat Sink, J. Inst. Eng. Ser. C. (2019). doi:10.1007/s40032-019- 00515-z. open in new tab
  20. M. Klugmann, P. Dabrowski, D. Mikielewicz, Pressure drop related to flow maldistribution in a model minichannel plate heat exchanger, Arch. Thermodyn. 39 (2018) 123-146. doi:10.1515/aoter-2018-0015. open in new tab
  21. W. Zhou, W. Deng, L. Lu, J. Zhang, L. Qin, S. Ma, Y. Tang, Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 4884-4894. doi:10.1016/j.ijhydene.2014.01.041. open in new tab
  22. S. Kumar, P.K. Singh, Effects of flow inlet angle on flow maldistribution and thermal performance of water cooled mini-channel heat sink, Int. J. Therm. Sci. 138 (2019) 504-511. doi:10.1016/j.ijthermalsci.2019.01.014. open in new tab
  23. P. Dąbrowski, M. Klugmann, D. Mikielewicz, Selected studies of flow maldistribution in a minichannel plate heat exchanger, Arch. Thermodyn. 38 (2017) 135-148. doi:10.1515/aoter- 2017-0020. open in new tab
  24. J. Mathew, P.S. Lee, T. Wu, C.R. Yap, Experimental study of flow boiling in a hybrid microchannel-microgap heat sink, Int. J. Heat Mass Transf. 135 (2019) 1167-1191. doi:10.1016/j.ijheatmasstransfer.2019.02.033. open in new tab
  25. A. Tamanna, P.S. Lee, Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink, Int. J. Heat Mass Transf. 82 (2015) 1-15. doi:10.1016/j.ijheatmasstransfer.2014.11.047. open in new tab
  26. T. Alam, P.S. Lee, C.R. Yap, L. Jin, A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation, Int. J. Heat Mass Transf. 58 (2013) 335-347. doi:10.1016/j.ijheatmasstransfer.2012.11.020. open in new tab
  27. L.S. Maganti, P. Dhar, T. Sundararajan, S.K. Das, Heat spreader with parallel microchannel configurations employing nanofluids for near-active cooling of MEMS, Int. J. Heat Mass Transf. 111 (2017) 570-581. doi:10.1016/j.ijheatmasstransfer.2017.04.032. open in new tab
  28. A. Gorodetsky, T. Rozenfeld, H.D. Haustein, G. Ziskind, Flow and heat transfer analysis of hybrid cooling schemes: Adding micro-jets to a micro-gap, Int. J. Therm. Sci. 138 (2019) 367- 383. doi:10.1016/j.ijthermalsci.2019.01.015. open in new tab
  29. M. Piasecka, K. Strąk, B. Maciejewska, Calculations of Flow Boiling Heat Transfer in a Minichannel Based on Liquid Crystal and Infrared Thermography Data, Heat Transf. Eng. 38 (2017) 332-346. doi:10.1080/01457632.2016.1189272. open in new tab
  30. K. Strąk, M. Piasecka, B. Maciejewska, Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels, Int. J. Heat Mass Transf. 117 (2018) 375-387. doi:10.1016/j.ijheatmasstransfer.2017.10.019. open in new tab
  31. M. Saeed, M.H. Kim, Header design approaches for mini-channel heatsinks using analytical and numerical methods, Appl. Therm. Eng. 110 (2017) 1500-1510. doi:10.1016/j.applthermaleng.2016.09.069. open in new tab
  32. W. Tang, L. Sun, H. Liu, G. Xie, Z. Mo, J. Tang, Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure, Appl. Therm. Eng. 121 (2017) 163-171. doi:10.1016/j.applthermaleng.2017.04.051. open in new tab
  33. R. Kumar, G. Singh, D. Mikielewicz, A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink, J. Heat Transfer. 140 (2018) 72401- 72410. http://dx.doi.org/10.1115/1.4038830. open in new tab
  34. R. Kumar, G. Singh, D. Mikielewicz, Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach, J. Electron. Packag. 141 (2019) 21009-21011. http://dx.doi.org/10.1115/1.4043158. open in new tab
  35. C. Anbumeenakshi, M.R. Thansekhar, Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel, Exp. Therm. Fluid Sci. 75 (2016) 156- 161. doi:10.1016/j.expthermflusci.2016.02.004. open in new tab
  36. P. Dąbrowski, Mitigation of Flow Maldistribution in Minichannel and Minigap Heat Exchangers by Introducing Threshold in Manifolds, J. Appl. Fluid Mech. 13 (2020) 815-826. doi:10.29252/jafm.13.03.30454. open in new tab
  37. K. Dhinsa, C. Bailey, K. Pericleous, Investigation into the performance of turbulence models for fluid flow and heat transfer phenomena in electronic applications, IEEE Trans. Components Packag. Technol. 28 (2005) 686-699. doi:10.1109/TCAPT.2005.859758. open in new tab
  38. C.S. Sharma, M.K. Tiwari, B. Michel, D. Poulikakos, Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid, Int. J. Heat Mass Transf. 58 (2013) 135-151. doi:10.1016/j.ijheatmasstransfer.2012.11.012. open in new tab
  39. P.S. Lee, S. V. Garimella, Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios, Int. J. Heat Mass Transf. 49 (2006) 3060-3067. doi:10.1016/j.ijheatmasstransfer.2006.02.011. open in new tab
  40. J.M. Commenge, L. Falk, J.P. Corriou, M. Matlosz, Optimal Design for Flow Uniformity in Microchannel Reactors, AIChE J. 48 (2002) 345-358. doi:10.1002/aic.690480218. open in new tab
  41. P. Minqiang, Z. Dehuai, T. Yong, C. Dongqing, CFD-based study of velocity distribution among multiple parallel microchannels, J. Comput. 4 (2009) 1133-1138. doi:10.4304/jcp.4.11.1133-1138. open in new tab
  42. I.A. Ghani, N.A. Che Sidik, N. Kamaruzzaman, W. Jazair Yahya, O. Mahian, The effect of manifold zone parameters on hydrothermal performance of micro-channel HeatSink: A review, Int. J. Heat Mass Transf. 109 (2017) 1143-1161. doi:10.1016/j.ijheatmasstransfer.2017.03.007. open in new tab
  43. S.S. Sehgal, K. Murugesan, S.K. Mohapatra, Effect of channel and plenum aspect ratios on the performance of microchannel heat sink under different flow arrangements, J. Mech. Sci. Technol. 26 (2012) 2985-2994. doi:10.1007/s12206-012-0705-z. open in new tab
Sources of funding:
  • Narodowe Centrum Nauki, projekt Nr 2017/27/N/ST8/02785 na lata 2018–2020.
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags