Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field - Publication - Bridge of Knowledge

Search

Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field

Abstract

This paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order shear deformation shell theory (FSDST), the problem is estimated. Afterward, the numerical results are taken analytically and compared with other existing literature. Hereafter, the influences of various factors, such as the magnetic field, are discussed deeply. It is observed that when the magnetic field is studied in three dimensions, the transverse magnetic effect is the most serious factor that affects fundamentally the torsional stability of the shell.

Citations

  • 1 0 6

    CrossRef

  • 0

    Web of Science

  • 1 1 6

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 38 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE no. 148, pages 1 - 14,
ISSN: 0020-7225
Language:
English
Publication year:
2020
Bibliographic description:
Malikan M., Krasheninnikov M., Eremeev V.: Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field// INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE -Vol. 148, (2020), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijengsci.2019.103210
Bibliography: test
  1. Akbarzadeh Khorshidi, M. (2018). The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133 , 15-25 .
  2. Akgöz, B. , & Civalek, Ö. (2012). Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Materials & Design, 42 , 164-171 . open in new tab
  3. Arefi, M. , Kiani, M. , & Rabczuk, T. (2019). Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Composites Part B: Engineering, 168 , 320-333 . open in new tab
  4. Chowdhurry, A. N. R. , Wang, C. M. , & Koh, S. J. A. (2014). Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. International Journal of Applied Mechanics, 6 (1), 1450 0 06 .
  5. Elimelech, M., Gregory, J., Jia, X., & Williams, R. A. (1995). Chapter 15 -Application of simulation techniques to colloidal dispersion systems. Particle Depo- sition & Aggregation, Measurement, Modelling and Simulation , 402-425. doi: 10.1016/B978-075067024-1/50015-7 . open in new tab
  6. Eringen, A. C. (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54 (9), 4703-4710 . open in new tab
  7. Farajpour, A. , Ghayesh, M. H. , & Farokhi, H. (2019). Nonlocal nonlinear mechanics of imperfect carbon nanotubes. International Journal of Engineering Science, 142 , 201-215 . open in new tab
  8. Gholami, R. , & Ansari, R. (2017). A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezo- magnetic rectangular nanoplates with various edge supports. Composite Structures, 166 , 202-218 . open in new tab
  9. Gholami, R. , Darvizeh, A. , Ansari, R. , & Sadeghi, F. (2016). Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory. European Journal of Mechanics -A/Solids, 58 , 76-88 . open in new tab
  10. Ghorbanpour Arani, A. , Abdollahian, M. , Kolahchi, R. , & Rahmati, A. H. (2013). Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model. Composites: Part B, 51 , 291-299 . open in new tab
  11. Han, Q. , & Lu, G. (2003). Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. European Journal of Mechanics A/Solids, 22 (6), 875-883 . open in new tab
  12. Hao, M. J. , Guo, X. M. , & Wang, Q. (2010). Small-scale effect on torsional buckling of multi-walled carbon nanotubes. European Journal of Mechanics A/Solids, 29 (1), 49-55 . open in new tab
  13. Jeong, B.-W. , Lim, J.-K. , & Sinnott, S. B. (2007). Elastic torsional responses of carbon nanotube systems. Journal of Applied Physics, 101 , 084309 . Karami, B. , Shahsavari, D. , & Janghorban, M. (2019). On the dynamics of porous doubly-curved nanoshells. International Journal of Engineering Science, 143 , 39-55 .
  14. Khademolhosseini, F. , Rajapakse, R. K. N. D. , & Nojeh, A. (2010). Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Compu- tational Materials Science, 48 (4), 736-742 . open in new tab
  15. Kok, Z. K. J. , & Wong, C. H. (2016). Molecular dynamics simulation studies of mechanical properties of different carbon nanotube systems. Molecular Simu- lation, 42 (15), 1274-1280 . open in new tab
  16. Lim, C. W. , Zhang, H. , & Reddy, J. N. (2015). A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78 , 298-313 . open in new tab
  17. Lu, Y. J. , & Wang, X. (2006). Combined torsional buckling of multi-walled carbon nanotubes. Journal of Physics D: Applied Physics, 39 (15), 3380-3387 . open in new tab
  18. Lurie, S. , & Solyaev, Y. (2019a). On the formulation of elastic and electroelastic gradient beam theories. Continuum Mechanics and Thermodynamics, 31 (6), 1601-1613 . open in new tab
  19. Lurie, S. , & Solyaev, Y. (2019b). Anti-plane inclusion problem in the second gradient electroelasticity theory. International Journal of Engineering Science, 144 , 103129 . open in new tab
  20. Malikan, M. (2017). Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling, 48 , 196-207 . open in new tab
  21. Malikan, M. , Dimitri, R. , & Tornabene, F. (2019). Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering, 158 , 198-205 . open in new tab
  22. Malikan, M. , & Nguyen, V. B. (2018). Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 102 , 8-28 . open in new tab
  23. Mehralian, F. , Tadi Beni, Y. , & Karimi Zeverdejani, M. (2017). Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Physics of Condensed Matter, 514 , 61-69 . open in new tab
  24. Mikhasev, G., & Nobili, A. (2019). On the solution of the purely nonlocal theory of beam elasticity as a limiting case of the two-phase theory. International Journal of Solids and Structures . doi: 10.1016/j.ijsolstr.2019.10.022 . open in new tab
  25. Mikhasev, G. I. , Eremeyev, V. A. , Wilde, K. , & Maevskaya, S. S. (2019). Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core. Journal of Intelligent Material Systems and Structures, 30 (18-19), 2748-2769 . open in new tab
  26. Natsuki, T. , Tsuchiya, T. , Ni, Q. Q. , & Endo, M. (2010). Torsional elastic instability of double-walled carbon nanotubes. Carbon, 48 (15), 4362-4368 . open in new tab
  27. Parvaneh, V. , Shariati, M. , Torabi, H. , Masood, A. , & Sabeti, M. (2012). Torsional buckling behavior of SWCNTs using a molecular structural mechanics approach considering vacancy defects. Fullerenes, Nanotubes and Carbon Nanostructures, 20 (8), 709-720 . open in new tab
  28. Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science , 45 (2-8), 288-307 . open in new tab
  29. Sahmani, S. , & Aghdam, M. M. (2017). Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences, 131-132 , 95-106 . open in new tab
  30. Sahmani, S. , & Aghdam, M. M. (2018). Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Composites Part B: Engineering, 132 , 258-274 . open in new tab
  31. She, G.-L. , Yuan, F.-G. , Karami, B. , Ren, Y.-R. , & Xiao, W.-S. (2019). On nonlinear bending behavior of FG porous curved nanotubes. International Journal of Engineering Science, 135 , 58-74 . open in new tab
  32. Shen, H.-S. , & Zhang, C.-L. (2010). Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Composite Structures, 92 (5), 1073-1084 . open in new tab
  33. Shojaeefard, M. H. , Mahinzare, M. , Safarpour, H. , Saeidi Googarchin, H. , & Ghadiri, M. (2018). Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Applied Mathematical Modelling, 61 , 255-279 . open in new tab
  34. Solyaev, Y. , & Lurie, S. (2019). Pure bending of a piezoelectric layer in second gradient electroelasticity theory. Acta Mechanica, 230 (12), 4197-4211 . open in new tab
  35. Solyaev, Y. , Lurie, S. , Koshurina, A. , Dobryanskiy, V. , & Kachanov, M. (2019). On a combined thermal/mechanical performance of a foam-filled sandwich panels. International Journal of Engineering Science, 134 , 66-76 . open in new tab
  36. Song, H.-Y. , & Zha, X.-W. (2011). Molecular dynamics study of effects of nickel coating on torsional behavior of single-walled carbon nanotube. Physica B, 406 (4), 992-995 . open in new tab
  37. Wang, Q. , Quek, S. T. , & Varadan, V. K. (2007). Torsional buckling of carbon nanotubes. Physics Letters A, 367 (1-2), 135-139 . open in new tab
  38. Wang, X. , Yang, H. K. , & Dong, K. (2005). Torsional buckling of multi-walled carbon nanotubes. Materials Science and Engineering A, 404 (1-2), 314-322 . open in new tab
  39. Xiaohu, Y. , Yugang, S. , & Hanzhou, L. (2013). Combined torsional buckling of carbon nanotubes subjected to thermo-electro-mechanical loadings with consideration of scale effect. Key Engineering Materials, 562-565 , 744-749 .
  40. Yang, H. K. , & Wang, X. (2007). Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Composite Structures, 77 (2), 182-192 . open in new tab
  41. Zhang, C.-L. , & Shen, H.-S. (2006). Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon, 44 (13), 2608-2616 . open in new tab
  42. Zhang, Q. W. , & Li, B. (2015). Torsional behavior of single-walled carbon nanotubes. Carbon, 94 , 826-835 . open in new tab
  43. Zhang, Y. Y. , & Wang, C. M. (2008). Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. Journal of Physics: Condensed Matter, 20 (45), 455214 . open in new tab
Verified by:
Gdańsk University of Technology

seen 250 times

Recommended for you

Meta Tags