Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes
Abstract
Chitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating interfaces for electroanalysis. This study explores the role of electrostatically-driven chemical interactions and crosslinking density originating from different chitosan (Cs) and glutaraldehyde (Ga) concentrations in this aspect. Studying anionic ([Fe(CN)6]3−/4−), neutral (FcDM0/+), and cationic ([Ru(NH3)6]2+/3+) redox probes highlights the influence of Coulombic interactions with chitosan chains containing positively-charged pathways, calculated by DFT analysis. Our study reveals how a proper Ch-to-Ga ratio has a superior influence on the cross-linking efficacy and resultant charge transfer kinetics, which is primarily boosted by up to 20× analyte preconcentration increase, due to electrostatically-driven migration of negatively charged ferrocyanide ions toward positively charged chitosan hydrogel. Notably the surface engineering approach allows for a two-orders of magnitude enhancement in [Fe(CN)6]4− limit of detection, from 0.1 µM for bare GCE down to even 0.2 nM upon an adequate hydrogel modification.
Citations
-
2
CrossRef
-
0
Web of Science
-
2
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.bioelechem.2024.108804
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
BIOELECTROCHEMISTRY
no. 161,
ISSN: 1567-5394 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Smułka A., Cieślik M., Olejnik A., Zieliński A., Ryl J., Ossowski T.: Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes// BIOELECTROCHEMISTRY -, (2024), s.108804-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.bioelechem.2024.108804
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 26 times
Recommended for you
Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5-f][1,10]phenanthroline Ligands.
- C. Reichardt,
- M. Pinto,
- M. Wachtler
- + 6 authors