Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review - Publication - Bridge of Knowledge

Search

Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review

Abstract

Nowadays, waste tire rubber (WTR) management is a growing and serious problem. Therefore, research works focused on the development of cost-effective and environmentally-friendly methods of WTR recycling are fully justified. Incorporation of WTR into polymer matrices and composite materials attracts much attention, because this approach allows sustainable development of industrially applicable waste tires recycling technologies. Generally, utilization of WTR as a filler for polymer composites noticeably reduces materials costs, while suitable modification/functionalization of WTR may significantly enhance the performance of plastics and rubbers. This work aims to summarize the literature reports related to the thermoset/WTR composites based on various matrices such as: polyurethanes, epoxy and other resins. It particularly focuses on compatibilization strategies in thermosets/WTR systems and their impact on the chemistry and physical interfacial interactions between thermoset matrix and WTR filler phase, what significantly affecting performance properties of prepared materials. Moreover, future trends and limitation related to thermoset/WTR composites development are discussed.

Citations

  • 8 4

    CrossRef

  • 0

    Web of Science

  • 8 4

    Scopus

Cite as

Full text

download paper
downloaded 346 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
WASTE MANAGEMENT no. 108, pages 106 - 118,
ISSN: 0956-053X
Language:
English
Publication year:
2020
Bibliographic description:
Hejna A., Korol J., Przybysz-Romatowska M., Zedler Ł., Chmielnicki B., Formela K.: Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review// WASTE MANAGEMENT -Vol. 108, (2020), s.106-118
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.wasman.2020.04.032
Bibliography: test
  1. Abadyan, M., Bagheri, R., Kouchakzadeh, M.A., 2012a. Fracture toughness of a hybrid-rubber-modified epoxy. I. Synergistic toughening. J. Appl. Polym. Sci. 125 (3), 2467-2475. https://doi.org/10.1002/app.35367. open in new tab
  2. Abadyan, M., Kouchakzadeh, M.A., Bagheri, R., 2012b. Fracture toughness of a hybrid rubber modified epoxy. II. Effect of loading rate. J. Appl. Polym. Sci. 125 (3), 2476-2483. https://doi.org/10.1002/app.35379. open in new tab
  3. Abu-Jdayil, B., Mourad, A.H., Hussain, A., 2016a. Thermal and physical characteristics of polyester-scrap tire composites. Constr. Build. Mater. 105, 472-479. https://doi.org/10.1016/j.conbuildmat.2015.12.180. open in new tab
  4. Abu-Jdayil, B., Mourad, A.H.I., Hussain, A., 2016b. Investigation on the mechanical behavior of polyester-scrap tire composites. Constr. Build. Mater. 127, 896-903. https://doi.org/10.1016/j.conbuildmat.2016.09.138. open in new tab
  5. Adhikari, B., De, D., Maiti, S., 2000. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 25, 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4. open in new tab
  6. Aliabdo, A.A., Elmoaty, A.E.M.A., Abdelbaset, M.M., 2015. Utilization of waste rubber in non-structural applications. Constr. Build. Mater. 91, 195-207. https://doi. org/10.1016/j.conbuildmat.2015.05.080. open in new tab
  7. Alkadi, F., Lee, J., Yeo, J.S., Hwang, S.H., Cho, J.W., 2019. 3D Printing of ground tire rubber composites. Int. J. Pr. Eng. Man.-GT. 2019. https://doi.org/10.1007/ s40684-019-00023-6. open in new tab
  8. Anu Mary, J., Benny, G., Madhusoodanan, K.N., Rosamma, A., 2016. The current status of sulphur vulcanization and devulcanization chemistry: devulcanization. Rubber Sci. 29, 62-100.
  9. Aoudia, K., Azem, S., Aït Hocine, N., Gratton, M., Pettarin, V., Seghar, S., 2017. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manage. 60, 471-481. https://doi.org/10.1016/j. wasman.2016.10.051. open in new tab
  10. Asaro, L., Gratton, M., Seghar, S., Aït Hocine, N., 2018. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recy. 133, 250-262. https://doi.org/10.1016/ j.resconrec.2018.02.016. open in new tab
  11. Bagheri, R., Marouf, B.T., Pearson, R.A., 2009. Rubber-toughened epoxies: A critical review. Polym. Rev. 49 (3), 201-225. https://doi.org/10.1080/ open in new tab
  12. Bagheri, R., Williams, M.A., Pearson, R.A., 1997. Use of surface modified recycled rubber particles for toughening of epoxy polymers. Polym. Eng. Sci. 37 (2), 245- 251. https://doi.org/10.1002/pen.11666. open in new tab
  13. Bockstal, L., Berchem, T., Schmetz, Q., Richel, A., 2019. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 236,. https://doi.org/10.1016/j.jclepro.2019.07.049 117574. open in new tab
  14. Boynton, M.J., Lee, A., 1997. Fracture of an epoxy polymer containing recycled elastomeric particles. J. Appl. Polym. Sci. 66 (2), 271-277. https://doi.org/ 10.1002/(SICI)1097-4628(19971010)66:2<271::AID-APP8>3.0.CO;2-T. open in new tab
  15. Cachaço, A.G., Afonso, M.D., Pinto, M.L., 2013. New applications for foam composites of polyurethane and recycled rubber. J. Appl. Polym. Sci. 129, 2873-2881. https://doi.org/10.1002/app.38962. open in new tab
  16. Carraher, C.E., 2003. Sepour/Carraher's Polymer Chemistry. Revised and Expanded. Marcel Dekker, Inc., New York, NY, United States.
  17. Celikbilek, C., Akovali, G., Kaynak, C., 2004. Modification of epoxy by a liquid elastomer and solid rubber particles. Polym. Bull. 51 (5-6), 429-435. https:// doi.org/10.1007/s00289-004-0231-y. open in new tab
  18. Č erný , M., Jančář, J., 2016. Composites based on polyurethane-urea and ground rubber from car tyres: relation between structure and properties. Chem. Pap. 71 (6), 1119-1127. https://doi.org/10.1007/s11696-016-0060-0. open in new tab
  19. Chen, T.K., Jan, Y.H., 1992. Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution. J. Mat. Sci. 27 (1), 111-121. https:// doi.org/10.1007/BF00553845. open in new tab
  20. Danch, A., Ilisch, S., Sułkowski, W.W., Moczyń ski, M., Radoń , A., Radusch, H.J., 2005. DMTA study of the urethane network in rubber waste-urethane composites. J. Therm. Anal. Calorim. 79, 623-630. https://doi.org/10.1007/s10973-005-0587- 8. open in new tab
  21. Danch, A., Sułkowski, W.W., Moczyń ski, M., Radoń , A., Stelzer, F., Jurga, S., 2004. Structural relaxation and morphology of the rubber-urethane composites. J. Appl. Polym. Sci. 94, 1186-1193. https://doi.org/10.1002/app.21027. open in new tab
  22. De, S.K., 2001. Re-use of ground rubber waste -A review. Prog. Rubber Plast. Technol. 17 (2), 113-126. https://doi.org/10.1177/147776060101700203. open in new tab
  23. De Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., Advincula, R.C., 2016. High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141-155. https://doi.org/10.1016/j. reactfunctpolym.2016.04.010. open in new tab
  24. De Sousa, F.D.B., Scuracchio, C.H., Hu, G.H., Hoppe, S., 2017. Devulcanization of waste tire rubber by microwaves. Polym. Degrad. Stabil. 138, 169-181. https:// doi.org/10.1016/j.polymdegradstab.2017.03.008. open in new tab
  25. Desai, S., Thakore, I.M., Brennan, A., Devi, S., 2001. Polyurethane-nitrile rubber blends. J. Macromol. Sci. A 38 (7), 711-729. https://doi.org/10.1081/MA- 100103875. open in new tab
  26. Dixit, S., Goel, R., Dubey, A., Shivhare, P.R., Bhalavi, T., 2017. Natural Fibre Reinforced Polymer Composite Materials -A Review. Polym. Renew. Res. 8 (2), 71-78. https://doi.org/10.1177/204124791700800203. open in new tab
  27. Fan, P., Lu, C., 2011a. Grafting of hyperbranched poly(amidoamine) onto waste tire rubber powder and its potential application as the curing agent for epoxy resin. Polym. Adv. Technol. 23 (1), 48-56. https://doi.org/10.1002/pat.1822. open in new tab
  28. Fan, P., Lu, C., 2011b. Surface graft copolymerization of poly(methyl methacrylate) onto waste tire rubber powder through ozonization. J. Appl. Polym. Sci. 122, 2262-2270. https://doi.org/10.1002/app.34329. open in new tab
  29. Formela, K., Haponiuk, J.T., 2014. Curing characteristics, mechanical properties and morphology of butyl rubber filled with ground tire rubber (GTR). Iran. Polym. J. 23, 185-194. https://doi.org/10.1007/s13726-013-0214-7. open in new tab
  30. Formela, K., Hejna, A., Zedler, Ł., Colom, X., Cañavate, J., 2019. Microwave treatment in waste rubber recycling -recent advances and limitations. Express Polym. Lett. 13 (6), 565-588. https://doi.org/10.3144/expresspolymlett.2019.48. open in new tab
  31. Formela, K., Hejna, A., Zedler, Ł., Przybysz, M., Ryl, J., Reza Saeb, M., Piszczyk, Ł., 2017. Structural, thermal and physico-mechanical properties of polyurethane/ brewers' spent grain composite foams modified with ground tire rubber. Ind. Crop. Prod. 108, 844-852. https://doi.org/10.1016/j.indcrop.2017.07.047. open in new tab
  32. Formela, K., Klein, M., Colom, X., Saeb, M.R., 2016. Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR). Polym. Degrad. Stabil. 125, 1-11. https://doi.org/10.1016/j.polymdegradstab.2015.12.022. open in new tab
  33. Fuhrmann, I., Karger-Kocsis, J., 1999. Promising approach to functionalisation of ground tyre rubber -photochemically induced grafting: Short Communication. Plast. Rubber Compos. 28 (10), 500-504. open in new tab
  34. Gayathri, R., Vasanthakumari, R., Padmanabhan, C., 2013. Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. Int. J. Sci. Eng. Res. 4, 301-308. open in new tab
  35. Gą gol, M., Boczkaj, G., Haponiuk, J., Formela, K., 2015. Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber. Polym. Degrad. Stab. 119, 113-120. https://doi.org/10.1016/j. polymdegradstab.2015.05.007. open in new tab
  36. Gibala, D., Hamed, G.R., 1994. Cure and mechanical behavior of rubber compounds containing ground vulcanizates. Part I: cure behavior. Rubber Chem. Technol. 67, 636-648. https://doi.org/10.5254/1.3538699. open in new tab
  37. Gibala, D., Laohapisitpanich, K., Thomas, D., Hamed, G.R., 1996. Cure and mechanical behavior of rubber compounds containing ground vulcanizates. Part II: Mooney viscosity. Rubber Chem. Technol. 69, 115-119. https://doi.org/10.5254/ 1.3538351. open in new tab
  38. Gibala, D., Thomas, D., Hamed, G.R., 1999. Cure and mechanical behavior of rubber compounds containing ground vulcanizates. Part III. Tensile and tear strength. Rubber Chem. Technol. 72, 357-360. https://doi.org/10.5254/1.3538807. open in new tab
  39. Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., Piszczyk, Ł., 2017. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crop. Prod. 95, 113-125. https://doi.org/10.1016/j.indcrop.2016.10.023. open in new tab
  40. Irez, A.B., Bayraktar, E., Miskioglu, I., 2019. Damping and toughening effect of the reinforcements on the epoxy modified recycled + devulcanized rubber based composites. In: Thakre, P.R., Singh, R.P., Slipher, G. (Eds.), Mechanics of composite, hybrid and multifunctional materials, Volume 5. Springer International Publishing, New York, pp. 147-158. open in new tab
  41. Irez, A.B., Bayraktar, E., Miskioglu, I., 2018. Recycled and devulcanized rubber modified epoxy-based composites reinforced with nano-magnetic iron oxide, Fe 3 O 4 . Compos. Part. B-Eng. 148, 1-13. https://doi.org/10.1016/ j.compositesb.2018.04.047. open in new tab
  42. Kalkornsurapranee, E., Nakason, C., Kummerlöwe, C., Vennemann, N., 2012. Development and preparation of high-performance thermoplastic vulcanizates based on blends of natural rubber and thermoplastic polyurethanes. J. Appl. Polym. Sci. 128 (4), 2358-2367. https://doi.org/ 10.1002/app.38201. open in new tab
  43. Kandasamy, J., Gökalp, I., 2014. Pyrolysis, Combustion, and Steam Gasification of Various Types of Scrap Tires for Energy Recovery. Energ. Fuel. 29 (1), 346-354. https://doi.org/10.1021/ef502283s. open in new tab
  44. Karger-Kocsis, J., Mészáros, L., Bárány, T., 2012. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mat. Sci. 48 (1), 1-38. https://doi. org/10.1007/s10853-012-6564-2. open in new tab
  45. Kaynak, C., Celikbilek, C., Akovali, G., 2003. Use of silane coupling agents to improve epoxy-rubber interface. Eur. Polym. J. 39 (6), 1125-1132. https://doi.org/ 10.1016/S0014-3057(02)00381-6. open in new tab
  46. Kaynak, C., Sipahi-Saglam, E., Akovali, G., 2001. A fractographic study on toughening of epoxy resin using ground tyre rubber. Polymer 42 (9), 4393-4399. https:// doi.org/10.1016/S0032-3861(00)00734-5. open in new tab
  47. Maderuelo-Sanz, R., Barrigón Morillas, J.M., Martín-Castizo, M., Gómez Escobar, V., Rey Gozalo, G., 2013. Acoustical performance of porous absorber made from recycled rubber and polyurethane resin. Lat. Am. J. Solids Stru. 10 (3), 585-600. https://doi.org/10.1590/S1679-78252013000300008. open in new tab
  48. Mangili, I., Collina, E., Anzano, M., Pitea, D., Lasagni, M., 2014. Characterization and supercritical CO 2 devulcanization of cryo-ground tire rubber: Influence of devulcanization process on reclaimed material. Polym. Degrad. Stabil. 102, 15- 24. https://doi.org/10.1016/j.polymdegradstab.2014.02.017. open in new tab
  49. Müller, M., Valášek, P., Rudawska, A., Chotĕborský , R., 2018. Effect of active rubber powder on structural two-component epoxy resin and its mechanical properties. J. Adhes. Sci. Technol. 32, 1531-1547. https://doi.org/10.1080/ 01694243.2018.1428040. open in new tab
  50. Ong, H.R., Khan, M.R., Yousuf, A., Jeyaratnam, N., Prasad, D.M.R., 2015. Effect of waste rubber powder as a filler for plywood application. Pol. J. Chem. Technol. 17 (1), 41-47. https://doi.org/10.1515/pjct-2015-0007. open in new tab
  51. Paje, S.E., Bueno, M., Terán, F., Miró, R., Pérez-Jiménez, F., Martínez, A.H., 2010. Acoustic field evaluation of asphalt mixtures with crumb rubber. Appl. Acoust. 71, 578-582. https://doi.org/10.1016/j.apacoust.2009.12.003. open in new tab
  52. Pearson, R.A., Yee, A.F., 1991. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J. Mat. Sci. 26 (14), 3828-3844. https://doi.org/10.1007/BF01184979. open in new tab
  53. Pfretzschner, J., Rodríguez, R.M., 1999. Acoustic properties of rubber crumbs. Polym. Test. 18, 81-92. https://doi.org/10.1016/S0142-9418(98)00009-9. open in new tab
  54. Piszczyk, Ł., Hejna, A., Danowska, M., Strankowski, M., Formela, K., 2015a. Polyurethane/ground tire rubber composite foams based on polyglycerol: processing, mechanical and thermal properties. J. Reinf. Plast. Compos. 34, 708-717. https://doi.org/10.1177/0731684415579089. open in new tab
  55. Piszczyk, Ł., Hejna, A., Formela, K., Danowska, M., Strankowski, M., 2015b. Effect of ground tire rubber on structural, mechanical and thermal properties of flexible polyurethane foams. Iran. Polym. J. 24, 75-84. https://doi.org/10.1007/s13726- 014-0301-4. open in new tab
  56. Piszczyk, Ł., Hejna, A., Formela, K., Danowska, M., Strankowski, M., 2015c. Rigid polyurethane foams modified with ground tire rubber -mechanical, morphological and thermal studies. Cell. Polym. 2, 45-62. https://doi.org/ 10.1177/026248931503400201. open in new tab
  57. Price, W., Smith, E.D., 2006. Waste tire recycling: environmental benefits and commercial challenges. Int. J. Environ. Technol. Manag. 6, 362-374. https://doi. org/10.1504/IJETM.2006.009001. open in new tab
  58. Ramarad, S., Khalid, M., Ratnam, C.T., Chuah, A.L., Rashmi, W., 2015. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004. open in new tab
  59. Ratna, D., Banthia, A.K., 2004. Rubber toughened epoxy. Macromol. Res. 12 (1), 11- 21. https://doi.org/10.1007/BF03218989. open in new tab
  60. Rodriguez, E.L., 1988. The effect of cryogenically ground rubber on some mechanical properties of an unsaturated polyester resin. Polym. Eng. Sci. 28, 1455-1461. https://doi.org/10.1002/pen.760282204. open in new tab
  61. Rooj, S., Basak, G.C., Maji, P.K., Bhowmick, A.K., 2011. New route for devulcanization of natural rubber and the properties of devulcanized rubber. J. Polym. Environ. 19, 382-390. https://doi.org/10.1007/s10924-011-0293-5. open in new tab
  62. Ryszkowska, J., Leszczyń ska, M., Auguścik, M., Bryśkiewicz, A., Półka, M., Kukfisz, B., Wierzbicki, Ł., Aleksandrowicz, J., Szczepkowski, L., Oliwa, R., 2018. Cores of composite structures made of semi-rigid foams for use as protecting shields for firefighters. Polimery 63 (2), 125-133. https://doi.org/10.1007/10.14314/ polimery.2018.2.6. open in new tab
  63. Sabzekar, M., Chenar, M.P., Mortazavi, S.M., Kariminejad, M., Asadi, S., Zohur, G., 2015. Influence of process variables on chemical devulcanization of sulfur- cured natural rubber. Polym. Degrad. Stab. 118, 88-95. https://doi.org/10.1016/ j.polymdegradstab.2015.04.013. open in new tab
  64. Sandberg, O., Bäckström, G., 1979. Thermal properties of natural rubber versus temperature and pressure. J. Appl. Phys. 50 (7), 4720-4724. https://doi.org/ 10.1063/1.326529. open in new tab
  65. Schnecko, H., 1998. Rubber Recycling. Macromol. Symp. 135, 327-343. https://doi. org/10.1002/masy.19981350133. open in new tab
  66. Seghar, S., Asaro, L., Rolland-Monnet, M., Aït Hocine, N., 2019. Thermo-mechanical devulcanization and recycling of rubber industry waste. Resour. Conserv. Recy. 144, 180-186. https://doi.org/10.1016/j.resconrec.2019.01.047. open in new tab
  67. Shan, C.W., Ghazali, M.I., Idris, M.I., 2013. Improved vibration characteristics of flexible polyurethane foam via composite formation. Int. J. Automotiv. Mech. Eng. 7, 1031-1042. https://doi.org/10.15282/ijame.7.2012.19.0084. open in new tab
  68. Shan, C.W., Idris, M.I., Ghazali, M.I., 2013b.. Study of flexible polyurethane foams reinforced with coir fibres and tyre particles. Int. J. Appl. Phys. Math. 2, 123- 130. https://doi.org/10.7763/IJAPM.2012.V2.67. open in new tab
  69. Sipahi-Saglam, E., Akovali, G., Kaynak, C., Akkas, N., Yetmez, M., 2001. Studies on epoxy modified with recycled rubber. Polym. Eng. Sci. 41 (3), 514-521. https:// doi.org/10.1002/pen.10748. open in new tab
  70. Song, P., Wan, C., Xie, Y., Formela, K., Wang, S., 2018. Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect. Waste Manag. 78, 238-248. https://doi.org/10.1016/j. wasman.2018.05.054. open in new tab
  71. Stevenson, K., Stallwood, B., Hart, A.G., 2008. Tire rubber recycling and bioremediation: A review. Bioremediat. J. 12, 1-11. https://doi.org/10.1080/ 10889860701866263. open in new tab
  72. Strakšys, A., Valsi unas, I., Stalnionis, G., Eicher-Lorka, O., Kuodis, Z., Bražinskienė , D., Jukna, A., Asadauskas, S., 2018. Influence of polyurethane adhesives on tensile and compressive properties of ground rubber composites. Chemija 29, 145-156. https://doi.org/10.6001/chemija.v29i2.3718. open in new tab
  73. Subramaniyan, S.K., Mahan, S., Ghazali, M.I., Ismon, M., Ahmad Zaidi, A.M., 2013. Mechanical behavior of polyurethane composite foams from kenaf fiber and recycled tire rubber particles. Appl. Mech. Mater. 315, 861-866. https://doi.org/ 10.4028/www.scientific.net/AMM.315.861. open in new tab
  74. Sułkowski, W.W., Danch, A., Moczyń ski, M., Radoń , A., Sułkowska, A., Borek, J., 2004. Thermogravimetric study of rubber waste-polyurethane composites. J. Therm. Anal. Calorim. 78, 905-921. https://doi.org/10.1007/s10973-004-0457-9. open in new tab
  75. Sułkowski, W.W., Mistarz, S., Borecki, T., Moczyń ski, M., Danch, A., Borek, J., Macią _ zek, M., Sułkowska, A., 2006. Kinetic parameters from thermogravimetric study of used rubber granulates-polyurethane composites. J. Therm. Anal. Calorim. 84, 91-97. https://doi.org/10.1007/s10973-005-7203-9. open in new tab
  76. Tan, J., Mei Ding, Y., Tao He, X., Liu, Y., An, Y., Min Yang, W., 2008. Abrasion resistance of thermoplastic polyurethane materials blended with ethylene- propylene-diene monomer rubber. J. Appl. Polym. Sci. 110 (3), 1851-1857. https://doi.org/10.1002/app.28756. open in new tab
  77. Tatangelo, V., Mangili, I., Caracino, P., Anzano, M., Najmi, Z., Bestetti, G., Collina, E., Franzetti, A., Lasagni, M., 2016. Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462T strain. Appl. Microbiol. Biotech. 100 (20), 8931-8942. https://doi.org/10.1007/s00253-016-7691-5. open in new tab
  78. Thomas, B.S., Kumar, S., Mehra, P., Gupta, R.C., Joseph, M., Csetenyi, L.J., 2016. Abrasion resistance of sustainable green concrete containing waste tire rubber particles. Constr. Build. Mater. 124, 906-909. https://doi.org/10.1016/ j.conbuildmat.2016.07.110. open in new tab
  79. Tsubokawa, N., Fujiki, K., Sone, Y., 1988. Radical grafting from carbon black. Graft polymerization of vinyl monomers initiated by peroxyester groups introduced onto carbon black surface. Polym. J. 20, 213-220. https://doi.org/10.1295/ polymj.20.213. open in new tab
  80. Valášek, P., Žarnovský , J., Müller, M., 2013. Thermoset composite on basis of recycled rubber. Adv. Mat. Res. 801, 67-73. https://doi.org/10.4028/ www.scientific.net/AMR.801.67. open in new tab
  81. Wang, Y., Yeh, F.C., Lai, S.M., Chan, H.C., Shen, H.F., 2003. Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym. Eng. Sci. 43 (4), 933-945. https://doi.org/10.1002/ pen.10077. open in new tab
  82. Yee, A.F., Pearson, R.A., 1986. Toughening mechanisms in elastomer-modified epoxies. J. Mat. Sci. 21 (7), 2462-2474. https://doi.org/10.1007/BF01114293. open in new tab
  83. Zhang, X., Lu, Z., Tian, D., Li, H., Lu, C., 2013. Mechanochemical devulcanization of ground tire rubber and its application in acoustic absorbent polyurethane foamed composites. J. Appl. Polym. Sci. 127, 4006-4014. https://doi.org/ 10.1002/app.37721. open in new tab
  84. Zhao, B., Brittain, W., 2000. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677-710. https://doi.org/10.1016/S0079-6700(00)00012-5. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 166 times

Recommended for you

Meta Tags