Waste Tyres Pyrolysis for Obtaining Limonene - Publication - Bridge of Knowledge

Search

Waste Tyres Pyrolysis for Obtaining Limonene

Abstract

This review deals with the technologies of limonene production from waste tyre pyrolysis. Thermal decomposition is attractive for tackling the waste tyre disposal problem, as it enables both: energy to be recovered and limonene to be obtained. This material management recycling of tyres is environmentally more beneficial than the burning of all valuable products, including limonene. Given this recoverability of materials from waste tyres, a comprehensive evaluation was carried out to show the main effect of process conditions (heating rate, temperature, pressure, carrier gas flow rate, and type of volatile residence and process times) for different pyrolytic methods and types of apparatus on the yield of limonene. All the results cited are given in the context of the pyrolysis method and the type of reactor, as well as the experimental conditions in order to avoid contradictions between different researchers. It is shown that secondary and side reactions are very sensitive to interaction with the above-mentioned variables. The yields of all pyrolytic products are also given, as background for limonene, the main product reported in this study.

Citations

  • 4 1

    CrossRef

  • 0

    Web of Science

  • 3 5

    Scopus

Cite as

Full text

download paper
downloaded 142 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 29,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Januszewicz K., Kazimierski P., Kosakowski W., Lewandowski W.: Waste Tyres Pyrolysis for Obtaining Limonene// Materials -Vol. 13,iss. 6 (2020), s.1-29
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13061359
Bibliography: test
  1. Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type-A review. J. Anal. Appl. Pyrolysis 2019, 140, 25-53. open in new tab
  2. Elegbede, J.A.; Elson, C.E.; Qureshi, A.; Tanner, M.A.; Gould, M.N. Inhibition of DMBA-induced mammary cancer by the monoterpene d-limonene. Carcinogenesis 1984, 5, 661-664. open in new tab
  3. Elson, C.E.; Maltzman, T.H.; Boston, J.L.; Tanner, M.A.; Gould, M.N. Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis 1988, 9, 331-332. open in new tab
  4. Bardon, S.; Foussard, V.; Fournel, S.; Loubat, A. Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett. 2002, 181, 187-194. open in new tab
  5. Gupta, A.; Myrdal, P.B. Development of a perillyl alcohol topical cream formulation. Int. J. Pharm. 2004, 269, 373- 383. open in new tab
  6. Back, N., Cohen, I., Kritchevsky, D., Lajtha, A., Paoletti, R., Eds. Dietary Phytochemicals in Cances Prevention and Treatment. Advances in Experimental Medicine and Biology; American Institute for Cancer Research: Arlington, VA, USA, 1995. open in new tab
  7. Trytek, M.; Paduch, R.; Fiedurek, J.; Kandefer-Szerszeń, M. Monoterpeny-Stare zwiazki, nowe zastosowania i biotechnologiczne metody ich otrzymywania. Biotechnologia 2007, 76, 135-155.
  8. Crowell, P.L.; Chang, R.R.; Ren, Z.; Elson, C.E.; Gould, M.N. Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J. Biol. Chem. 1991, 266, 17679-17685. open in new tab
  9. Crowell, P.L.; Gould, M.N. Chemoprevention and therapy of cancer by d-limonene. Crit. Rev. Oncog. 1994, 5, 1-22. open in new tab
  10. Ahn, K.J.; Lee, C.K.; Choi, E.K.; Griffin, R.; Song, C.W.; Park, H.J. Cytotoxicity of perillyl alcohol against cancer cells is potentiated by hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 813-819. open in new tab
  11. Hardcastle, I.R.; Rowlands, M.G.; Moreno Barber, A.; Grimshaw, R.M.; Mohan, M.K.; Nutley, B.P.; Jarman, M. Inhibition of protein prenylation by metabolites of limonene. Biochem. Pharmacol. 1999, 57, 801-809. open in new tab
  12. Szczepanik, A.; Sobkowiak, A. Utlenianie limonenu tlenem cząsteczkowym i nadtlenkiem wodoru. Wiadomości Chem. 2009, 63, 601-634 (In Polish).
  13. Gawarecka, A.; Wróblewska, A.; Pełech, R. Limonene epoxidation on selected titanium-silicate catalyst. Tech. Issues 2015, 2, 9-15. open in new tab
  14. Duetz, W.A.; Bouwmeester, H.; Van Beilen, J.B.; Witholt, B. Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl. Microbiol. Biotechnol. 2003, 61, 269-277. open in new tab
  15. Kołodziejczyk, A. Naturalne Związki Organiczne; PWN: Warszawa, Poland, 2003 (In Polish).
  16. Sobkowiak, A.; Szczepanik, A.; Naróg, D.; Charczuk, M. Oxidation of limonene with dioxygen catalyzed by 2,2'- bipyridyl manganese(II) and iron(II) complexes supported on a bentonite carrier. Przem. Chem. 2015, 11, 2006-2009. open in new tab
  17. Stanciulescu, M.; Ikura, M. Limonene ethers from tire pyrolysis oil. Part 2: Continuous flow experiments. J. Anal. Appl. Pyrolysis 2007, 78, 76-84. open in new tab
  18. Bicas, J.L.; Barros, F.F.C.; Wagner, R.; Godoy, H.T.; Pastore, G.M. Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. J. Ind. Microbiol. Biotechnol. 2008, 35, 1061-1070. open in new tab
  19. Kraidman, G.; Mukherjee, B.; Hill, J. Conversion of d-limonene into an optically active isomer of α-terpineol by a cladosporium species. Bacteriol. Proc. 1969, 69, 63-69.
  20. Cadwalleder, K.R.; Braddock, R.J.; Parish, M.E.; Higgins, D.P. Bioconversion of (+)-limonene by pseudomonas gladioli. J. Food Sci. 1989, 54, 1241-1245. open in new tab
  21. Tan, Q.; Day, D.; Cadwallader, K. Bioconversion of R-(+)-limonene by P. digitatum (NRRL 1202). Process Biochem. 1998, 33, 29-37. 22. Safety Data Sheet According to the Summary of EC 1907/2006. Available online: https://www.polychromal.com/images/downloads/en/safety-datasheets/duracolour_magenta-en.pdf (Accessed on 11 March 2020). open in new tab
  22. Zhang, X.; Wang, T.; Ma, L.; Chang, J. Vacuum pyrolysis of waste tires with basic additives. Waste Manag. 2008, 28, 2301-2310. open in new tab
  23. Danon, B.; Van Der Gryp, P.; Schwarz, C.E.; Görgens, J.F. A review of dipentene (dl-limonene) production from waste tire pyrolysis. J. Anal. Appl. Pyrolysis 2015, 112, 1-13. open in new tab
  24. Rofiqul, I.M.; Haniu, H.; Rafiqul, A.B.M. Limonene-rich liquids from pyrolysis of heavy automotive tire wastes. J. Environ. Eng. 2007, 2, 681-695. open in new tab
  25. Piskorz, J.; Majerski, P.; Radlein, D.; Wik, T.; Scott, D.S. Recovery of carbon black from scrap rubber. Energy Fuels 1999, 13, 544-551. open in new tab
  26. Ferrero, G.; Maniatis, K.; Buekens, A.; Bridgwater, A.V. Pyrolysis and Gasification;
  27. Mazloom, G.; Farhadi, F.; Khorasheh, F. Kinetic modeling of pyrolysis of scrap tires. J. Anal. Appl. Pyrolysis 2009, 84, 157-164. open in new tab
  28. Senneca, O.; Salatino, P.; Chirone, R. Fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel 1999, 78, 1575-1581. open in new tab
  29. Cheung, K.Y.; Lee, K.L.; Lam, K.L.; Lee, C.W.; Hui, C.W. Integrated kinetics and heat flow modelling to optimise waste tyre pyrolysis at different heating rates. Fuel Process. Technol. 2011, 92, 856-863. open in new tab
  30. Suhanya, M.; Thirumarimurugan, M.; Kannadasan, T. Recovery of oil from waste tyres using pyrolysis method: Review. IJRET 2013, 1, 81-90.
  31. Dimitrov, D.H.; Dimitrov, H. Method and Equipment for Whole Tyre Pyrolysis. U.S. Patent Application No. 2008/0257709 A1 2004, 23 October 2008. open in new tab
  32. Williams, P.T.; Bottrill, R.P.; Cunliffe, A.M. Combustion of tyre pyrolysis oil. Process Saf. Environ. Prot. 1998, 76, 291- 301. open in new tab
  33. Pringle, J.A. Microwave Pyrolysis Apparatus for Waste Tires. U.S. Patent Application No. 7,101,464 B1, 5 September 2006. open in new tab
  34. Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Microwave pyrolysis of polymeric materials. In Microwave Heating; InTech: London, UK, 2011. open in new tab
  35. Ludlow-Palafox, C.; Chase, H.A. Microwave-induced pyrolysis of plastic wastes. Ind. Eng. Chem. Res. 2001, 40, 4749- 4756. open in new tab
  36. Landini, L.; de Araújo, S.G.; Lugão, A.B.; Wiebeck, H. Preliminary analysis to BIIR recovery using the microwave process. Eur. Polym. J. 2007, 43, 2725-2731. open in new tab
  37. Fix, S.R. Microwave devulcanization of rubber. Elastomerics 1980, 112, 38-40.
  38. Zanchet, A.; Carli, L.N.; Giovanela, M.; Crespo, J.S.; Scuracchio, C.H.; Nunes, R.C.R. Characterization of microwave- devulcanized composites of ground SBR scraps. J. Elastomers Plast. 2009, 41, 497-507. open in new tab
  39. Hong, C.K.; Isayev, A.I. Continuous ultrasonic devulcanization of carbon black-filled NR vulcanizates. J. Appl. Polym. Sci. 2001, 79, 2340-2348. open in new tab
  40. Tapale, M.; Isayev, A.I. Continuous ultrasonic devulcanization of unfilled NR vulcanizates. J. Appl. Polym. Sci. 1998, 79, 2007-2019. open in new tab
  41. Isayev, A.I.; Chen, J.; Tukachinsky, A. Novel ultrasonic technology for devulcanization of waste rubbers. Rubber Chem. Technol. 1995, 68, 267-280. open in new tab
  42. Yun, J.; Isayev, A.I. Recycling of roofing membrane rubber by ultrasonic devulcanization. Polym. Eng. Sci. 2003, 43, 809-821. open in new tab
  43. Levin, V.Y.; Kim, S.H.; Isayev, A.I.; Massey, J.; Meerwall, E. Ultrasound devulcanization of sulfur vulcanized SBR crosslink density and molecular mobility. Ultrasound Devulcanization 1995, 69, 104-114. open in new tab
  44. Diao, B.; Isayev, A.I.; Levin, V.Y. Basic study of continuous ultrasonic devulcanization of unfilled silicone rubber. Rubber Chem. Technol. 1999, 72, 152-164. open in new tab
  45. Oh, J.S.; Isayev, A.I. Ultrasonically treated polypropylene/ground tire rubber blends. Rubber Chem. Technol. 2002, 75, 617-626. open in new tab
  46. Tang, L.; Huang, H. An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. J. Anal. Appl. Pyrolysis 2004, 72, 35-40. open in new tab
  47. Chen, D.T.; Perman, C.A.; Riechert, M.E.; Hoven, J. Depolymerization of tire and natural rubber using supercritical fluids. J. Hazard. Mater. 1995, 44, 53-60. open in new tab
  48. Park, S.; Gloyna, E.F. Statistical study of the liquefaction of used rubber tyre in supercritical water. Fuel 1997, 76, 999-1003. open in new tab
  49. Onsri, K.; Prasassarakich, P.; Ngamprasertsith, S. Co-liquefaction of coal and used tire in supercritical water. Energy Power Eng. 2010, 02, 95-102. open in new tab
  50. Ahmad, N.; Abnisa, F.; Daud, W.M.A.W. Potential use of natural rubber to produce liquid fuels using hydrous pyrolysis-a review. RSC Adv. 2016, 6, 68906-68921. open in new tab
  51. Kojima, M.; Tosaka, M.; Ikeda, Y.; Kohjiya, S. Devulcanization of carbon black filled natural rubber using supercritical carbon dioxide. J. Appl. Polym. Sci. 2005, 95, 137-143. open in new tab
  52. Jiang, K.; Shi, J.; Ge, Y.; Zou, R.; Yao, P.; Li, X.; Zhang, L. Complete devulcanization of sulfur-cured butyl rubber by using supercritical carbon dioxide. J. Appl. Polym. Sci. 2013, 127, 2397-2406. open in new tab
  53. Bouvier, J.M.; Charbel, F.; Gelus, M. Gas-solid pyrolysis of tire wastes-Kinetics and material balances of batch pyrolysis of used tires. Resour. Conserv. 1987, 15, 205-214. open in new tab
  54. Williams, P.T.; Taylor, D.T. Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons. Fuel 1993, 72, 1469-1474. open in new tab
  55. Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by vacuum pyrolysis of used tires. J. Anal. Appl. Pyrolysis 2001, 57, 91-107. open in new tab
  56. Pakdel, H.; Roy, C.; Aubln, H.; Jean, G.; Coulombe, S. Formation of dl-Limonene in used tire vacuum pyrolysis oils. Environ. Sci. Technol. 1991, 25, 1646-1649. open in new tab
  57. Roy, C.; Darmstadt, H.; Benallal, B.; Amen-Chen, C. Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber. Fuel Process. Technol. 1997, 50, 87-103. open in new tab
  58. Roy, C.; Chaala, A.; Darmstadt, H. The vacuum pyrolysis of used tires end-uses for oil and carbon black products. J. Anal. Appl. Pyrolysis 1999, 51, 201-221. open in new tab
  59. Roy, C.; Labrecque, B.; de Caumia, B. Recycling of scrap tires to oil and carbon black by vacuum pyrolysis. Resour. Conserv. Recycl. 1990, 4, 203-213. open in new tab
  60. Bouvier, J.M.; Gelus, M. Pyrolysis of rubber wastes in heavy oils and use of the products. Resour. Conserv. 1986, 12, 77-93. open in new tab
  61. Williams, P.T.; Brindle, A.J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J. Anal. Appl. Pyrolysis 2003, 67, 143-164. open in new tab
  62. Williams, P.T.; Brindle, A.J. Catalytic pyrolysis of tyres: Influence of catalyst temperature. Fuel 2002, 81, 2425-2434. open in new tab
  63. López, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and red mud. Appl. Catal. B Environ. 2011, 104, 211-219. open in new tab
  64. Shah, J.; Rasul Jan, M.; Mabood, F. Catalytic pyrolysis of waste tyre rubber into hydrocarbons via base catalysts. Iran. J. Chem. Chem. Eng. 2008, 27, 103-109. open in new tab
  65. Roy, C.; Blanchette, D.; de Caumia, B. Industrial scale demonstration of the pyrocyclingTM process for the conversion of biomass to biofuels and chemicals. In Proceedings of the 1st World Conference on Biomass for Energy and Industry, Sevilla, Spain, 5-9 June 2000; pp. 1032-1035.
  66. Olazar, M.; Aguado, R.; Arabiourrutia, M.; Lopez, G.; Barona, A.; Bilbao, J. Catalyst effect on the composition of tire pyrolysis products. Energy Fuels 2008, 22, 2909-2916. open in new tab
  67. Amutio, M.; Lopez, G.; Artetxe, M.; Erkiaga, A.; Alvarez, J.; Barbarias, I.; Olazar, M. Valorisation of waste tires by pyrolysis over a FCC catalyst in a conical spouted bed reactor. Chem. Eng. Trans. 2012, 29, 817-822.
  68. Murena, F.; Garufi, E.; Gioia, F. Hydrogenative pyrolysis of waste tyres: Kinetic analysis. J. Hazard. Mater. 1996, 50, 143-156. open in new tab
  69. Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Poirier, M.A. Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. Fuel 1995, 74, 1589-1594. open in new tab
  70. Oledzka, E.; Pyskło, L.; Sobczak, M.; Łuksa, A. Piroliza zuzytych opon w aspekcie technicznym i ekonomicznym oraz uszlachetnianie otrzymywanych produktów. Polimery 2006, 51, 407-414 (In Polish). open in new tab
  71. Darmstadt, H.; Roy, C.; Kaliguine, S. Inorganic components and sulphur compounds in carbon blacks from vacuum pyrolysis of used tires. Kautschuk und Gummi Kunststoffe 1994, 47, 891-895. open in new tab
  72. Darmstadt, H.; Roy, C.; Kaliaguine, S. ESCA characterization of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires. Carbon 1994, 32, 1399-1406. open in new tab
  73. Yang, J.; Tanguy, P.A.; Roy, C. Numerical model for the vacuum pyrolysis of scrap tires in batch reactors. AIChE J. 1995, 41, 1500-1512. open in new tab
  74. Yang, J.; Tanguy, P.A.; Roy, C. Heat transfer, mass transfer and kinetics study of the vacuum pyrolysis of a large used tire particle. Chem. Eng. Sci. 1995, 50, 1909-1922. open in new tab
  75. Darmstadt, H.; Roy, C.; Kaliaguine, S. Characterization of pyrolytic carbon blacks from commercial tire pyrolysis plants. Carbon 1995, 33, 1449-1455. open in new tab
  76. Leblanc, J.L.; Roy, C.; Mirmiran, S.; Benallal, B.; Schwerdtfeger., A.E. The plasticizing properties of heavy oils obtained from the vacuum pyrolysis of used tires. Kautsch. Gummi Kunstst. 1996, 49, 194-199.
  77. Roy, C.; Rastegar, A.; Kaliaguine, S.; Darmstadt, H.; Tochev, V. Physicochemical properties of carbon blacks from vacuum pyrolysis of used tires. Plast. Rubber Compos. Process. Appl. 1995, 23, 21-30.
  78. Mirmiran, S.; Pakdel, H.; Roy, C. Characterization of used tire vacuum pyrolysis oil: Nitrogenous compounds from the naphtha fraction. J. Anal. Appl. Pyrolysis 1992, 22, 205-215. open in new tab
  79. Roy, V.; de Caumia, B.; Roy, C. Development of a gas-cleaning system for a scrap-tire vacuum-pyrolysis plant. Gas Sep. Purif. 1992, 6, 83-87. open in new tab
  80. Pakdel, H.; Roy, C. Simultaneous gas chromatographic-Fourier transform infrared spectroscopic-Mass spectrometric analysis of synthetic fuel derived from used tire vacuum pyrolysis oil, naphtha fraction. J. Chromatogr. A 1994, 683, 203-214. open in new tab
  81. Mikulova, Z.; Honus, S.; Juchelkova, D.; Strakoś, V. Laboratory and pilot research of pyrolysis process. Trans. VSB 2012, LVIII, 45-56. open in new tab
  82. Mastral, A.M.; Murillo, R.; Callén, M.S.; García, T.; Snape, C.E. Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor. Energy Fuels 2000, 14, 739-744. open in new tab
  83. Mastral, A.M.; Murillo, R.; Callen, M.S.; Garcia, T. Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resour. Conserv. Recycl. 2000, 29, 263-272. open in new tab
  84. Williams, P.T.; Brindle, A.J. Temperature selective condensation of tyre pyrolysis oils to maximise the recovery of single ring aromatic compounds. Fuel 2003, 82, 1023-1031. open in new tab
  85. Wolfson, D.E.; Beckman, J.A.; Walters, J.G.; Bennett, D.J. Destructive Distillation of Scrap Tires; USA Department of the Interior, Bureau of Mines: Washington, DC, USA, 1969. open in new tab
  86. López, F.A.; Centeno, T.A.; Alguacil, F.J.; Lobato, B.; Urien, A. The grauthermic-tyres process for the recycling of granulated scrap tyres. J. Anal. Appl. Pyrolysis 2013, 103, 207-215. open in new tab
  87. González, J.F.; Encinar, J.M.; Canito, J.L.; Rodríguez, J.J. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis 2001, 58, 667-683. open in new tab
  88. Laresgoiti, M.F.; Caballero, B.M.; De Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M.J. Characterization of the liquid products obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 2004, 71, 917-934. open in new tab
  89. De Marco Rodriguez, I.; Laresgoiti, M.F.; Cabrero, M.A.; Torres, A.; Chomón, M.J.; Caballero, B. Pyrolysis of scrap tyres. Fuel Process. Technol. 2001, 72, 9-22. open in new tab
  90. Zabaniotou, A.A.; Stavropoulos, G. Pyrolysis of used automobile tires and residual char utilization. J. Anal. Appl. Pyrolysis 2003, 70, 711-722. open in new tab
  91. Bouvier, J.M.; Farhadi, F.; Gelus, M. A new method for upgrading rubber wastes. Int. Chem. Eng. 1983, 23, 645-650. open in new tab
  92. Yanik, J.; Yüksel, M.; Salam, M.; Olukcu, N.; Bartle, K.; Frere, B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel 1995, 74. open in new tab
  93. Hall, W.J.; Zakaria, N.; Williams, P.T. Pyrolysis of latex gloves in the presence of Y-zeolite. Waste Manag. 2009, 29, 797-803. open in new tab
  94. Williams, P.T.; Brindle, A.J. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres. Environ. Technol. UK 2003, 24, 921-929. open in new tab
  95. Karthikeyan, S.; Sathiskumar, C.; Moorthy, S.R. Effect of process parameters on tire pyrolysis: A review. J. Sci. Ind. Res. 2012, 71, 309-315.
  96. Larsen, J.W. Conversion of Waste Rubber to Fuel and Other Useful Products. U.S. Patent 3,996,022, 7 December 1976.
  97. Grzywa, E.; Molenda, J. Technologia Podstawowych Syntez Organicznych; WNT: Warszawa, Poland, 2000.
  98. Lopez, G.; Artetxe, M.; Maider, A.; Haritz, A.; Olazar, M.; Elordi, G. A conical spouted bed reactor for the valorisation of waste tires. In Proceedings of the 13th International Conference on Fluidization New Paradigm in Fluidization Engineering, Gyeongju, Korea, 16-21 May 2010. open in new tab
  99. Arabiourrutia, M.; Lopez, G.; Elordi, G.; Olazar, M.; Aguado, R.; Bilbao, J. Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chem. Eng. Sci. 2007, 62, 5271-5275. open in new tab
  100. Bajus, M.; Olahová, N. Thermal conversion of scrap tyres. Pet. Coal 2011, 53, 98-105.
  101. Dai, X.; Yin, X.; Wu, C.; Zhang, W.; Chen, Y. Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy 2001, 26, 385-399. open in new tab
  102. Conesa, J.A.; Martín-Gullón, I.; Font, R.; Jauhiainen, J. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environ. Sci. Technol. 2004, 38, 3189-3194. open in new tab
  103. Islam, M.R.; Parveen, M.; Haniu, H.; Islam Sarker, M.R. Innovation in pyrolysis technology for management of scrap tire a solution of energy and environment. Int. J. Environ. Sci. Dev. 2010, 1, 89-96. open in new tab
  104. Islam, M.R.; Joardder, M.U.H.; Kader, M.A.; Islam Sarker, M.R. Valorization of solid tire wastes available in Bangladesh by thermal treatment. In Proceedings of the WasteSafe 2011-2nd International Conference on Solid Waste Management in the Developing Countries, Khulna, Bangladesh, 13-15 February 2011. open in new tab
  105. Cunliffe, A.M.; Williams, P.T. Composition of oils derived from the batch pyrolysis of tyres. J. Anal. Appl. Pyrolysis 1998, 44, 131-152. open in new tab
  106. Mkhize, N.M.; van der Gryp, P.; Danon, B.; Görgens, J.F. Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. J. Anal. Appl. Pyrolysis 2016, 120, 314-320. open in new tab
  107. Acevedo, B.; Barriocanal, C. Fuel-oils from co-pyrolysis of scrap tyres with coal and a bituminous waste. Influence of oven configuration. Fuel 2014, 125, 155-163. open in new tab
  108. Alvarez, J.; Lopez, G.; Amutio, M.; Mkhize, N.M.; Danon, B.; van der Gryp, P.; Görgens, J.F.; Bilbao, J.; Olazar, M. Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy 2017, 128, 463- 474. open in new tab
  109. Choi, G.G.; Jung, S.H.; Oh, S.J.; Kim, J.S. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process. Technol. 2014, 123, 57-64. open in new tab
  110. Choi, G.G.; Oh, S.J.; Kim, J.S. Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy 2017, 141, 2234-2241. open in new tab
  111. Choi, G.G.; Oh, S.J.; Kim, J.S. Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content. Appl. Energy 2016, 170, 140-147. open in new tab
  112. Idris, R.; Chong, C.T.; Asik, J.A.; Ani, F.N. Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology. J. Clean. Prod. 2020, 244, 118649. open in new tab
  113. Kumar Singh, R.; Ruj, B.; Jana, A.; Mondal, S.; Jana, B.; Kumar Sadhukhan, A.; Gupta, P. Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379-389.
  114. Mkhize, N.M.; Danon, B.; Alvarez, J.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M.; van der Gryp, P.; Görgens, J.F. Influence of reactor and condensation system design on tyre pyrolysis products yields. J. Anal. Appl. Pyrolysis 2019, 143, 104683. open in new tab
  115. Song, Z.; Liu, L.; Yang, Y.; Sun, J.; Zhao, X.; Wang, W.; Mao, Y.; Yuan, X.; Wang, Q. Characteristics of limonene formation during microwave pyrolysis of scrap tires and quantitative analysis. Energy 2018, 142, 953-961. open in new tab
  116. Song, Z.; Yang, Y.; Zhao, X.; Sun, J.; Wang, W.; Mao, Y.; Ma, C. Microwave pyrolysis of tire powders: Evolution of yields and composition of products. J. Anal. Appl. Pyrolysis 2017, 123, 152-159. open in new tab
  117. Li, S.Q.; Yao, Q.; Chi, Y.; Yan, J.H.; Cen, K.F. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind. Eng. Chem. Res. 2004, 43, 5133-5145. open in new tab
  118. Mirmiran S. Ph.D Thesis, S. Universite' Laval, Quebec, QC, Canada, 1994. (In French)
  119. Chien, J.C.W.; Kiang, J.K.Y. Polymer reactions-X thermal pyrolysis of poly(isoprene). Eur. Polym. J. 1979, 15, 1059- 1065. open in new tab
  120. Bhowmick, A.K.; Rampalli, S.; Gallagher, K.; Seeger, R.; McIntyre, D. The degradation of guayule rubber and the effect of resin components on degradation at high temperature. J. Appl. Polym. Sci. 1987, 33, 1125-1139. open in new tab
  121. Groves, S.A.; Lehrle, R.S.; Blazsó, M.; Székely, T. Natural rubber pyrolysis: Study of temperature-and thickness- dependence indicates dimer formation mechanism. J. Anal. Appl. Pyrolysis 1991, 19, 301-309. open in new tab
  122. Ciochina, O. Etude de L'influence de L'incorporation de L'huile Lourde Obtenue par Pyrolyse Sous Vide de Vieux Pneumatiques Sur Les Proprie´te´s des Bitumes Routiers; Universite´ Laval: Quebec, QC, Canada, 1997. (In French)
  123. Roy, C.; Caumia, B.; de Pakdel, H.; Plante, P.; Blanchette, D.; Labrecque, B. Vacuum pyrolysis of used tires, petroleum sludges and forestry wastes technological development and implementation perspectives. J. Anal. Appl. Pyrolysis 1999, 51, 201-221. open in new tab
  124. Aubin, H. H. Memoire de Maitrise, Master's Thesis, H. Universite Laval at Sainte-Foy, Quebec, Canada, 1987. (In French)
  125. Gulzad, A. Recycling and Pyrolysis of Scrap Tire;
  126. López, G.; Olazar, M.; Aguado, R.; Bilbao, J. Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel 2010, 89, 1946-1952. open in new tab
  127. Kim, S.; Park, J.K.; Chun, H.D. Pyrolysis kinetics of scrap tire rubbers. I: Using DTG and TGA. J. Environ. Eng. USA 1995, 121, 507-514. open in new tab
  128. Mkhize, N.M.; Danon, B.; van der Gryp, P.; Görgens, J.F. Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chem. Eng. Res. Des. 2019, 152, 363-371. open in new tab
  129. Aguado, R.; Olazar, M.; Vélez, D.; Arabiourrutia, M.; Bilbao, J. Kinetics of scrap tyre pyrolysis under fast heating conditions. J. Anal. Appl. Pyrolysis 2005, 73, 290-298. open in new tab
  130. Uzun, B.B.; Yaman, E. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co- pyrolysis. Waste Manag. Res. 2014, 32, 961-970. open in new tab
  131. Teng, H.; Serio, M.A.; Wójtowicz, M.A.; Bassilakis, R.; Solomon, P.R. Reprocessing of used tires into activated carbon and other products. Ind. Eng. Chem. Res. 1995, 34, 3102-3111. open in new tab
  132. Oyedun, A.O.; Lam, K.-L.; Gebreegziabher, T.; Lee, H.K.M.; Hui, C.-W. Optimization of Multi-Stage Waste Tyre Pyrolysis Process. In Proceedings of the 20th European Symposium on Computer Aided Process Engineering, ESCAPE20: Ischia, Naples, Italy, 6-9 June 2010.
  133. Cheung, K.Y.; Lee, K.L.; Lam, K.L.; Chan, T.Y.; Lee, C.W.; Hui, C.W. Operation strategy for multi-stage pyrolysis. J. Anal. Appl. Pyrolysis 2011, 91, 165-182. open in new tab
  134. Al-Salem, S.M.; Lettieri, P. Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem. Eng. Res. Des. 2010, 88, 1599-1606. open in new tab
  135. Lopez, G.; Aguado, R.; Olazar, M.; Arabiourrutia, M.; Bilbao, J. Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag. 2009, 29, 2649-2655. open in new tab
  136. Chen, J.H.; Chen, K.S.; Tong, L.Y. On the pyrolysis kinetics of scrap automotive tires. J. Hazard. Mater. 2001, 84, 43- 55. open in new tab
  137. Islam, M.R.; Haniu, H.; Fardoushi, J. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh. Waste Manag. 2009, 29, 668-677. open in new tab
  138. Quek, A.; Balasubramanian, R. An algorithm for the kinetics of tire pyrolysis under different heating rates. J. Hazard. Mater. 2009, 166, 126-132. open in new tab
  139. Olazar, M.; Lopez, G.; Arabiourrutia, M.; Elordi, G.; Aguado, R.; Bilbao, J. Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis 2008, 81, 127-132. open in new tab
  140. Leung, D.Y.C.; Wang, C.L. Kinetic study of scrap tyre pyrolysis and combustion. J. Anal. Appl. Pyrolysis 1998, 45, 153-169. open in new tab
  141. Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 2005, 84, 1884-1892. open in new tab
Verified by:
Gdańsk University of Technology

seen 158 times

Recommended for you

Meta Tags