Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations - Publication - Bridge of Knowledge

Search

Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations

Abstract

Beginning with addition and multiplication intrinsic to a Koch-type curve, we formulate and solve wave equation describing wave propagation along a fractal coastline. As opposed to examples known from the literature, we do not replace the fractal by the continuum in which it is embedded. This seems to be the first example of a truly intrinsic description of wave propagation along a fractal curve. The theory is relativistically covariant under an appropriately defined Lorentz group.

Citations

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 3 1

    Scopus

Cite as

Full text

download paper
downloaded 34 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ACTA PHYSICA POLONICA B no. 50, pages 813 - 831,
ISSN: 0587-4254
Language:
English
Publication year:
2019
Bibliographic description:
Czachor M.: Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations// ACTA PHYSICA POLONICA B -Vol. 50,iss. 4 (2019), s.813-831
DOI:
Digital Object Identifier (open in new tab) 10.5506/aphyspolb.50.813
Bibliography: test
  1. M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, 1972.
  2. M. Grossman, The First Nonlinear System of Differential and Integral Calculus, Mathco, Rockport (1979). open in new tab
  3. M. Grossman, Bigeometric Calculus: A System with Scale-Free Derivative, Archimedes Foundation, Rockport, 1983.
  4. M. Czachor, Quantum Stud.: Math. Found. 3, 123 (2016). open in new tab
  5. D. Aerts, M. Czachor, M. Kuna, Chaos, Solitons Fract. 83, 201 (2016). open in new tab
  6. D. Aerts, M. Czachor, M. Kuna, Chaos, Solitons Fract. 91, 461 (2016). open in new tab
  7. D. Aerts, M. Czachor, M. Kuna, Rep. Math. Phys. 81, 357 (2018). open in new tab
  8. M. Czachor, Int. J. Theor. Phys. 56, 1364 (2017). open in new tab
  9. Z. Domański, M. Błaszak, arXiv:1706.00980 [math-ph]. open in new tab
  10. M. Burgin, Non-classical Models of Natural Numbers, Russ. Math. Surveys 32, 209-210 (1977) (in Russian).
  11. M. Burgin, Non-Diophantine Arithmetics, or is it Possible that 2 + 2 is not Equal to 4? , Ukrainian Academy of Information Sciences, Kiev 1997 (in Russian). open in new tab
  12. M. Burgin, arXiv:1010.3287 [math.GM]. open in new tab
  13. M. Burgin, G. Meissner, Appl. Math. 8, 133 (2017). open in new tab
  14. P. Benioff, Int. J. Theor. Phys. 50, 1887 (2011). open in new tab
  15. P. Benioff, Quantum Stud.: Math. Found. 2, 289 (2015). open in new tab
  16. P. Benioff, Quantum Inf. Proc. 15, 1081 (2016). open in new tab
  17. P.E.T. Jorgensen, S. Pedersen, J. Anal. Math. 75, 185 (1998). open in new tab
  18. P.E.T. Jorgensen, Analysis and Probability: Wavelets, Signals, Fractals, Springer, New York 2006. open in new tab
  19. M. Czachor, Information Processing and Fechner's Problem as a Choice of Arithmetic, in: M. Burgin, W. Hofkirchner (Eds.), Information Studies and the Quest for Interdisciplinarity: Unity Through Diversity, World Scientific, Singapore 2017, pp. 363-372. open in new tab
  20. D. Filip, C. Piatecki, Math. Aeterna 4, 101 (2014).
  21. D. Aniszewska, Nonlinear Dyn. 50, 265 (2007). open in new tab
  22. A.E. Bashirov, E. Mısırlı, A. Özyapıcı, J. Math. Anal. Appl. 337, 36 (2008). open in new tab
  23. L. Florack, H. van Assen, J. Math. Imaging Vis. 42, 64 (2012). open in new tab
  24. A. Ozyapıcı, B. Bilgehan, Numer. Algorithms 71, 475 (2016). open in new tab
  25. N. Yalcina, E. Celikb, A. Gokdogana, Optik 127, 9984 (2016). open in new tab
  26. M. Epstein, J. Śniatycki, Physica D 220, 54 (2006). open in new tab
  27. M. Epstein, J. Śniatycki, Chaos, Solitons Fract. 38, 334 (2008). open in new tab
  28. A. Parvate, S. Satin, A.D. Gangal, Fractals 19, 15 (2011). open in new tab
  29. S. Satin, A.D. Gangal, Fractals 24, 1650028 (2016). open in new tab
  30. A.K. Golmankhaneh, A.K. Golmankhaneh, D. Baleanu, Int. J. Theor. Phys. 54, 1275 (2015). open in new tab
  31. A.K. Golmankhaneh, Turk. J. Phys. 41, 418 (2017). open in new tab
  32. J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge 2001.
  33. R.S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton 2006.
  34. B. Mandelbrot, Science 155, 636 (1967). open in new tab
Verified by:
Gdańsk University of Technology

seen 112 times

Recommended for you

Meta Tags