Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications - Publication - Bridge of Knowledge

Search

Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications

Abstract

This paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a truncated ground plane. These dipoles are connected in series on both sides, running in parallel through a microstrip line. The proposed design significantly enhances the bandwidth, which extends from 26.5 to 40 GHz. This frequency range effectively covers the 5G bands of 28 and 38 GHz. The expedited trust-region (TR) gradient-based search algorithm is utilized to optimize the dimensions of the antenna components, resulting in a maximum gain of 11.2 dBi at 38 GHz. To further enhance the gain, modified H-shaped metamaterial (MTM)-based unit cells are integrated into the antenna substrate. The TR algorithm is employed once more to optimize the MTM dimensions, yielding a maximum gain of 15.1 dBi at 38 GHz. The developed system is experimentally validated, showing excellent agreement between the simulated and measured data.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 14,
ISSN: 2045-2322
Language:
English
Publication year:
2024
Bibliographic description:
Esmail B., Kozieł S., Pietrenko-Dąbrowska A., Isleifson D.: Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications// Scientific Reports -Vol. 14, (2024), s.185-
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-023-50769-y
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 64 times

Recommended for you

Meta Tags