Filters
total: 142
Best results in : Research Potential Pokaż wszystkie wyniki (109)
Search results for: CONNECTED DOMINATING SET
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Research Potential* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
-
Zespół Algorytmów i Modelowania Systemów
Research PotentialStudiowanie problemów i modeli teoriografowych ma na celu badanie złożoności obliczeniowej uogólnień problemu klasycznego kolorowania wierzchołków i krawędzi grafu znajdujących zastosowania w modelowaniu praktycznych problemów oraz badanie nowych miar oceny skuteczności algorytmów. W zakresie szeregowania zadań badania koncentrują się na konstrukcji harmonogramów optymalnych z punktu widzenia długości harmonogramu i średniego czasu...
-
Katedra Hydromechaniki i Hydroakustyki
Research PotentialZagadnienia związane z oddziaływaniem morza i zachowaniem się obiektów na morzu, zagadnienia bezpieczeństwa (niezatapialność), hydroakustyka.
Best results in : Business Offer Pokaż wszystkie wyniki (33)
Search results for: CONNECTED DOMINATING SET
-
Laboratorium Nanomateriałów CZT
Business OfferBadanie właściwość powierzchni z wykorzystaniem mikroskopu sił atomowych
-
Laboratorium Badawcze 2-3
Business OfferObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
-
Laboratorium Automatyki Napędu Elektrycznego
Business OfferProgramowalne układy napędowe zasilane przekształtnikowo ze sterowaniem mikroprocesorowym
Other results Pokaż wszystkie wyniki (3447)
Search results for: CONNECTED DOMINATING SET
-
Application of Doubly Connected Dominating Sets to Safe Rectangular Smart Grids
PublicationSmart grids, together with the Internet of Things, are considered to be the future of the electric energy world. This is possible through a two-way communication between nodes of the grids and computer processing. It is necessary that the communication is easy and safe, and the distance between a point of demand and supply is short, to reduce the electricity loss. All these requirements should be met at the lowest possible cost....
-
Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks
PublicationDominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...
-
Weakly connected Roman domination in graphs
PublicationA Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...
-
Unicyclic graphs with equal total and total outer-connected domination numbers
PublicationLet G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublicationA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...