Filters
total: 96
Best results in : Research Potential Pokaż wszystkie wyniki (78)
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Illume
Research PotentialILLUME [/ɪˈl(j)uːm/] to interdyscyplinarna grupa badawcza w ramach centrum badawczego EcoTech na Politechnice Gdańskiej, stworzona w celu minimalizacji wpływu zanieczyszczenia światłem sztucznym na ludzi, florę i faunę. Członkowie grupy posiadają wybitne umiejętności praktyczne i wiedzę badawczą w zakresie tych zagadnień. Nie tylko konsekwentnie identyfikując istotne problemy i tematy badawcze, ale także znajdując praktyczne rozwiązania...
-
Zespół Katedry Wytrzymałości Materiałów
Research PotentialKatedra zajmuje się zagadnieniami związanymi z wytrzymałością elementów konstrukcji, ich teorią oraz analizą, jak również do myśli przewodnich należy zaliczyć materiałowe badania doświadczalne oraz prace nad technologią betonu. Współpracujemy z przemysłem z branż budowlanych i okołobudowlanych, wykorzystując wypracowane doświadczenie i wiedzę z zakresu materiałów konstrukcyjnych i budowlanych.
-
Zespół Katedry Architektury Miejskiej i Przestrzeni Nadwodnych
Research PotentialWszystkie programy badań prowadzone w Katedrze powstają w odpowiedzi na problemy środowiskowe, wiążą się ze zmianami demograficznymi i wyzwaniami wynikającymi z rozwoju miast. Badane są urbanistyczne i architektoniczne możliwości związane z przekształceniami terenów poprzemysłowych. Zespół katedralny zaangażowany jest w opracowywanie kreatywnych rozwiązań dla ponownego wykorzystania struktur historycznych w oparciu o koncepcję...
Best results in : Business Offer Pokaż wszystkie wyniki (18)
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Centrum Civitroniki – Centrum Zaawansowanych Technologii
Business OfferCentrum Civitroniki działa na Wydziale Inżynierii Lądowej i Środowiska Politechniki Gdańskiej. W skład Centrum Cicitroniki wchodzą następujące pracownie:Pracownia DIM-Tefal, Pracownia defektorskopii, badań materiału i konstrukcji metalowych, Pracownia geodezyjnego monitorowania budowli inżynierskich, Pracownia badań drogowych, Pracownia fizyki budowli oraz Nazwa Civitronika jest wynikiem połączenia wyrażeń: „civil engineering”...
-
Laboratorium Innowacyjnych Zastosowań Informatyki
Business OfferBadania nad użytecznością i jakością oprogramowania w różnych zastosowaniach, w szczególności rozpoznawanie emocji użytkowników komputerów oraz badanie użyteczności oprogramowania i doświadczenia użytkownika aplikacji.
-
Laboratorium Badawcze 2-3
Business OfferObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
Other results Pokaż wszystkie wyniki (1281)
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Revisiting Supervision for Continual Representation Learning
Publication"In the field of continual learning, models are designed to learn tasks one after the other. While most research has centered on supervised continual learning, there is a growing interest in unsupervised continual learning, which makes use of the vast amounts of unlabeled data. Recent studies have highlighted the strengths of unsupervised methods, particularly self-supervised learning, in providing robust representations. The improved...
-
MagMax: Leveraging Model Merging for Seamless Continual Learning
PublicationThis paper introduces a continual learning approach named MagMax, which utilizes model merging to enable large pre-trained models to continuously learn from new data without forgetting previously acquired knowledge. Distinct from traditional continual learning methods that aim to reduce forgetting during task training, MagMax combines sequential fine-tuning with a maximum magnitude weight selection for effective knowledge integration...
-
Divide and not forget: Ensemble of selectively trained experts in Continual Learning
PublicationClass-incremental learning is becoming more popular as it helps models widen their applicability while not forgetting what they already know. A trend in this area is to use a mixture-of-expert technique, where different models work together to solve the task. However, the experts are usually trained all at once using whole task data, which makes them all prone to forgetting and increasing computational burden. To address this limitation,...
-
Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning
PublicationIn this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher...
-
Looking through the past: better knowledge retention for generative replay in continual learning
PublicationIn this work, we improve the generative replay in a continual learning setting to perform well on challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless, such an approach does not come without limitations. In particular, we notice the degradation of the continually trained...